The copper–zinc–tin oxide (CZTO) precursor was synthesized to avoid sudden volume expansion from CZTO precursor to Cu2ZnSnS4 (CZTS) thin films and smooth CZTSSe thin-film surfaces without pinholes. The CZTO precursor was prepared by coprecipitation and ball milling to form nanoink of CZTO. Based on the CZTO precursor, the CZTS thin film was fabricated and then selenized to make pinhole-free and flat Cu2ZnSn(S,Se)4(CZTSSe) thin films. The results show that the CZTO precursor greatly contributed to elevating the homologous surface characteristics and crystallinity of CZTSSe thin films by controlling selenium temperature, selenium time, and selenium source temperature. Finally, the conversion efficiency of the CZTSSe thin-film solar cell fabricated from the CZTO precursor was 4.11%, with an open-circuit voltage (Voc) of 623 mV, a short circuit current density (Jsc) of 16.02 mA cm−2, and a fill factor (FF) of 41.2%.
Currently, there are more perfect theoretical basis and operation methods for the research of the Cu2ZnSnS4 (CZTS) solar cell characteristics, but the experimental process is tedious. In this article, to measure the characteristics of the CZTS solar cells more accurately and quickly, the computer-aided measurement method was used. During testing the characteristics of solar cells, the results were collected and analyzed by using LabCoder and Origin software. By designing experiments and using software to record data and complete solar cell characterization tests in one step, the number of artificial changes in resistance during testing is reduced. In the experiments, the data can be obtained in real time by using experimental results of computer-aided measurement technology, which can significantly improve the experimental efficiency. Through computer real-time monitoring, the maximum output power of as-prepared solar cells is P
m = 1.62 W, and the calculated filling factor remains at 86%. It means that computer-aided measurement technology is suitable for the experiment of CZTS solar cell characteristics.
To reduce the formation of the impurity phase, a buffer volume can be used to expands and smooths the surface of Cu2ZnSnS4(CZTS) thin film. In this study, a Cu-Zn-Sn-O(CZTO) precursor was synthesized through the process of coprecipitation-calcination-ball milling-spin coating. The influence of pH, temperature, and PVP on the constituent of hydroxides was investigated in the process of coprecipitation. Cu-Zn-Sn-O with appropriate compositions could be obtained by regulating the temperature and preservation time of the calcination stage. After ball milling to form a nano ink, and then spin coating, SEM images proved the generation of CZTO precursors, which effectively promoted the formation of Cu2ZnSnS4 thin films. Finally, the phase, microstructure, chemical composition, and optical properties of the Cu2ZnSnS4 thin films prepared by sulfurized annealing CZTO precursors were characterized by EDX, XRD, Raman, FESEM, Hall effect, and UV methods. The prepared CZTS thin film demonstrated a band gap of 1.30 eV, which was suitable for improving the performance of CZTS thin film solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.