The effects of proton radiation on TiN/Zr-doped-HfO2(HZO)/Al2O3/P+-Ge ferroelectric tunneling junctions are investigated in the present work. The electrical characteristics are measured before and after different proton fluences. The remanent polarization exhibits negligible change, which demonstrates the proton radiation immunity of the ferroelectric material HZO. However, the capacitance, leakage current, endurance, and read current characteristics show obviously changed with the increase of proton fluence. The main reason for this is that proton radiation causes positive fixed charges to form in the Al2O3 layer, interface charges to form in Al2O3/Ge and the effective carrier concentration to reduce in the Ge substrate.
Deep ultraviolet (UV) photodetectors have important applications in the industrial and military fields. However, little research has been reported on organic phototransistors (OPTs) in the deep ultraviolet range. Here, a novel organic semiconductor containing a small torsion angle and low π-conjugation 2,2':5',2''-terthiophene groups, oF-PTTTP, is designed and synthesized, which exhibits high carrier mobility and unique deep ultraviolet response. Accordingly, an OPT based on oF-PTTTP single crystal shows high responsivity to deep-UV light. The photodetectors achieve high photoresponsivity (R) of 857 A/W and detectivity (D*) of 3.2×1015 Jones under 280 nm light illumination (only 95 nW• cm -2). To the best of our knowledge, 280 nm is the deepest detection wavelength reported for organic phototransistors and this work presents a new molecule design concept for organic phototransistors with deep-UV detection.
A full understanding of the impact of charge trapping on the memory window (MW) of HfO2-based ferroelectric field effect transistors (FeFETs) will permit the design of program and erase protocols, which will guide the application of these devices and maximize their useful life. The effects of charge trapping have been studied by changing the parameters of the applied program and erase pulses in a test sequence. With increasing the pulse amplitude and pulse width, the MW increases first and then decreases, a result attributed to the competition between charge trapping (CT) and ferroelectric switching (FS). This interaction between CT and FS is analyzed in detail using a single-pulse technique. In addition, the experimental data show that the conductance modulation characteristics are affected by the CT in the analog synaptic behavior of the FeFET. Finally, a theoretical investigation is performed in Sentaurus TCAD, providing a plausible explanation of the CT effect on the memory characteristics of the FeFET. This work is helpful to the study of the endurance fatigue process caused by the CT effect and to optimizing the analog synaptic behavior of the FeFET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.