Severe interfacial side reactions of polymer electrolyte with LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathode and Li metal anode restrict the cycling performance of solid-state NCM811/ Li batteries.H erein, we propose ac hemically stable ceramicpolymer-anchored solvent composite electrolyte with high ionic conductivity of 6.0 10 À4 Scm À1 ,w hiche nables the solid-state NCM811/Li batteries to cycle 1500 times.T he Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 nanowires (LNs) can tightly anchor the essential N, N-dimethylformamide (DMF) in poly(vinylidene fluoride) (PVDF), greatly enhancing its electrochemical stability and suppressing the side reactions.W ei dentify the ceramic-polymer-liquid multiple ion transport mechanism of the LNs-PVDF-DMF composite electrolyte by tracking the 6 Li and 7 Li substitution behavior via solid-state NMR. The stable interface chemistry and efficient ion transport of LNs-PVDF-DMF contribute to superior performances of the solid-state batteries at wide temperature range of À20-60 8 8C.
Figure 6. Illustration of the mass transfer mechanisms in LAO-LLZOF and LLZO. a) LAO-LLZOF structure illustrating multiple Li ion transport paths without electron-conducting capabilities in the biphasic grains. b,c) Operating mechanisms of ASLMBs. b) LAO-LLZOF illustrating the electronic blocking effect and ion-conducting capacity that results in uniform Li plating/stripping during cycling. c) LLZO with deposited Li dendrites penetrating the grain and Li filaments growing along the electron-conducting GBs. d) Energy bandgap and DOS calculation for LAO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.