A non-labeled, portable plasmonic biosensor-based device was developed to enable the ultra-sensitive and selective detection of Salmonella typhimurium in pork meat samples. Specifically, a plasmonic sensor, using the self-assembly of gold nanoparticles (AuNPs) to achieve a regulated diameter of 20 nm for the AuNP monolayers, was used to conduct high-density deposition on a transparent substrate, which produced longitudinal wavelength extinction shifts via a localized surface plasmon resonance (LSPR) signal. The developed aptamers conjugated to the LSPR sensing chips revealed an ultra-sensitive upper limit of detection (LOD) of approximately 104 cfu/mL for S. typhimurium in pure culture under the optimal assay conditions, with a total analysis time of 30–35 min. When the LSPR sensing chips were applied on artificially contaminated pork meat samples, S. typhimurium in the spiked pork meat samples was also detected at an LOD of 1.0 × 104 cfu/mL. The developed method could detect S. typhimurium in spiked pork meat samples without a pre-enrichment step. Additionally, the LSPR sensing chips developed against S. typhimurium were not susceptible to any effect of the food matrix or background contaminant microflora. These findings confirmed that the developed gold nanoparticle-aptamer-based LSPR sensing chips could facilitate sensitive detection of S. typhimurium in food samples.
In this study, we developed lateral flow assay (LFA) biosensors for the detection of hepatitis B surface antigens using well-controlled gold nanoparticles (AuNPs). To enhance colorimetric signals, a seeded growth method was used for the preparation of size-controlled AuNPs with a narrow size distribution. Different sizes of AuNPs in the range of 342–137.8 nm were conjugated with antibodies and then optimized for the efficient detection of LFA biosensors. The conjugation stability was investigated by UV-vis spectroscopy of AuNP dispersion at various pH values and concentrations of antibody. Based on optimized conjugation conditions, the use of 42.7 ± 0.8 nm AuNPs exhibited superior performance for the detection of LFAs relative to other sizes of AuNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.