An ingenious strategy based on energetic metal–organic frameworks with cesium salts for green and practical pyrotechnic composition has been described.
Polylactide foaming materials with promising biocompatibility balance the lightweight and mechanical properties well, and thus they can be desirable candidates for biological scaffolds used in tissue engineering. However, the cells are likely to coalesce and collapse during the foaming process of polylactide (PLA) due to its intrinsic low melt strength. This work introduces a unique PLA stereocomplexation into the microcellular foaming of poly (l-lactide)/poly (butylene succinate) (PLLA/PBS) based on supercritical carbon dioxide. The rheological properties of PLA/PBS with 5 wt% or 10 wt% poly (d-lactide) (PDLA) present enhanced melt strength owing to the formation of PLA stereocomplex crystals (sc-PLA), which act as physical pseudo-cross-link points in the molten blends by virtue of the strong intermolecular interaction between PLLA and the added PDLA. Notably, the introduction of either PBS or PDLA into the PLLA matrix could enhance its crystallization, while introducing both in the blend triggers a decreasing trend in the PLA crystallinity, which it is believed occurs due to the constrained molecular chain mobility by formed sc-PLA. Nevertheless, the enhanced melt strength and decreased crystallinity of PLA/PBS/PDLA blends are favorable for the microcellular foaming behavior, which enhanced the cell stability and provided amorphous regions for gas adsorption and homogeneous nucleation of PLLA cells, respectively. Furthermore, although the microstructure of PLA/PBS presents immiscible sea-island morphology, the miscibility was improved while the PBS domains were also refined by the introduction of PDLA. Overall, with the addition of PDLA into PLA/10PBS blends, the microcellular average cell size decreased from 3.21 to 0.66 μm with highest cell density of 2.23 × 1010 cells cm−3 achieved, confirming a stable growth of cells was achieved and more cell nucleation sites were initiated on the heterogeneous interface.
Summary: Bovine serum albumin imprinted calcium phosphate/alginate hydrogel microspheres were prepared with sodium alginate (SA), (NH4)2HPO4, and using CaCl2 as gelling agent, bovine serum albumin (BSA) as template in inverse suspension. The optimized rebinding properties of BSA imprinted hydrogel microspheres were investigated by controlling pH value and ionic concentration from the viewpoint of adjusting the process of gelling, removing template and rebinding. The optimized pH values for the imprinting of BSA in gelling, removing template and rebinding process was 4.1, 8.3 and 4.8, respectively. The effect of NaCl concentration on the BSA rebinding was also determined. We provided a strategy to get the optimized imprinting efficiency by altering pH value and ionic concentration in a weakly ionic cross‐linked hydrogel system on the process of protein's imprinting.
Information‐processing devices are the core components of modern electronics. Integrating them into textiles is the indispensable demand for electronic textiles to form close‐loop functional systems. Memristors with crossbar configuration are regarded as promising building blocks to design woven information‐processing devices that seamlessly unify with textiles. However, the memristors always suffer from severe temporal and spatial variations due to the random growth of conductive filaments during filamentary switching processes. Here, inspired by the ion nanochannels across synaptic membranes, a highly reliable textile‐type memristor made of Pt/CuZnS memristive fiber with aligned nanochannels, showing small set voltage variation (<5.6%) under ultralow set voltage (≈0.089 V), high on/off ratio (≈106), and low power consumption (0.1 nW), is reported. Experimental evidence indicate that nanochannels with abundant active S defects can anchor silver ions and confine their migrations to form orderly and efficient conductive filaments. Such memristive performances enable the resultant textile‐type memristor array to have high device‐to‐device uniformity and process complex physiological data like brainwave signals with high recognition accuracy (95%). The textile‐type memristor arrays are mechanically durable to withstand hundreds of bending and sliding deformations, and seamlessly unified with sensing, power‐supplying, and displaying textiles/fibers to form all‐textile integrated electronic systems for new generation human‐machine interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.