Microbes colonize human oral surfaces within hours after delivery. During postnatal development, physiological changes, such as the eruption of primary teeth and replacement of the primary dentition with permanent dentition, greatly alter the microbial habitats, which, in return, may lead to community composition shifts at different phases in people's lives. By profiling saliva, supragingival and mucosal plaque samples from healthy volunteers at different ages and dentition stages, we observed that the oral cavity is a highly heterogeneous ecological system containing distinct niches with significantly different microbial communities. More importantly, the phylogenetic microbial structure varies with ageing. In addition, only a few taxa were present across the whole populations, indicating a core oral microbiome should be defined based on age and oral niches.
Adrenal Cushing's syndrome is caused by excess production of glucocorticoid from adrenocortical tumors and hyperplasias, which leads to metabolic disorders. We performed whole-exome sequencing of 49 blood-tumor pairs and RNA sequencing of 44 tumors from cortisol-producing adrenocortical adenomas (ACAs), adrenocorticotropic hormone-independent macronodular adrenocortical hyperplasias (AIMAHs), and adrenocortical oncocytomas (ADOs). We identified a hotspot in the PRKACA gene with a L205R mutation in 69.2% (27 out of 39) of ACAs and validated in 65.5% of a total of 87 ACAs. Our data revealed that the activating L205R mutation, which locates in the P+1 loop of the protein kinase A (PKA) catalytic subunit, promoted PKA substrate phosphorylation and target gene expression. Moreover, we discovered the recurrently mutated gene DOT1L in AIMAHs and CLASP2 in ADOs. Collectively, these data highlight potentially functional mutated genes in adrenal Cushing's syndrome.
As one of the most clinically relevant human habitats, the human mouth is colonized by a set of microorganisms, including bacteria, archaea, fungi, and viruses. Increasing evidence has supported that these microbiota contribute to the two commonest oral diseases of man (dental caries and periodontal diseases), presenting significant risk factors to human health conditions, such as tumor, diabetes mellitus, cardiovascular diseases, bacteremia, preterm birth, and low birth weight in infants. It is widely accepted that oral microorganisms cause diseases mainly by a synergistic or cooperative way, and the interspecies interactions within the oral community play a crucial role in determining whether oral microbiota elicit diseases or not. Since a comprehensive understanding of the complex interspecies interactions within a community needs the knowledge of its endogenous residents, a plenty of research have been carried out to explore the oral microbial diversity. In this review, we focus on the recent progress in this field, including the oral microbiome composition and its association with human diseases.
Background:Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study.Methods:Five thousand one hundred and twenty-five NSCLC patients' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis.Results:EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments.Conclusions:EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.