Cryptosporidium ubiquitum is an emerging zoonotic pathogen. In the past, it was not possible to identify an association between cases of human and animal infection. We conducted a genomic survey of the species, developed a subtyping tool targeting the 60-kDa glycoprotein (gp60) gene, and identified 6 subtype families (XIIa–XIIf) of C. ubiquitum. Host adaptation was apparent at the gp60 locus; subtype XIIa was found in ruminants worldwide, subtype families XIIb–XIId were found in rodents in the United States, and XIIe and XIIf were found in rodents in the Slovak Republic. Humans in the United States were infected with isolates of subtypes XIIb–XIId, whereas those in other areas were infected primarily with subtype XIIa isolates. In addition, subtype families XIIb and XIId were detected in drinking source water in the United States. Contact with C. ubiquitum–infected sheep and drinking water contaminated by infected wildlife could be sources of human infections.
We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs), a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P. cervi within the Order Plagiorchiida, but relationships depicted within that order were not quite as expected from previous studies. The complete mtDNA sequence of P. cervi provides important genetic markers for diagnostics, ecological and evolutionary studies of digeneans.
The objective of this study was to determine the prevalence, species and subtypes of Cryptosporidium infecting yaks in the Qinghai Province of Northwestern China. The prevalence of Cryptosporidium spp. was detected by microscopy and nested-PCR. A total of 586 fecal samples were collected from yaks in 6 counties, of which 142 (24.2%) samples tested positive for Cryptosporidium. The small subunit (SSU) rRNA gene of fifty-five samples were amplified and sequenced successfully and demonstrated that Cryptosporidium bovis (31/55, 56.4%) was the most common species, followed by C. parvum (16/55, 29.1%) and C. ryanae (5/55, 9.0%). Mixed infections of C. parvum and C. bovis (n = 2), C. ryanae and C. bovis (n = 1) were also detected. All three species were found in yaks ranging in age from <1 year, 1–2 years, to >2 years. Cryptosporidium was most commonly detected in spring (28.4%), followed by summer (20.9%), then winter (17.5%). Cryptosporidium parvum positive samples were subtyped using the 60 kDa glycoprotein (gp60) gene. Subtypes IIaA15G2R1 (n = 8), IIaA16G2R1 (n = 2), IIaA14G1R1 (n = 1), IIaA14G2R1 (n = 1) and IIaA16G3R1 (n = 1) were detected. All of these subtypes are zoonotic, and may pose a potential threat to human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.