The ladder-type polyheterofluorenes were investigated theoretically by using density functional theory (DFT) to reveal their optical and electronic properties for applications in organic optoelectronic devices. The incorporation of heteroatoms (B, Si, Ge, N, P, O, and S) into the ladder-type highly fused polyfluorene backbone can influence and modify the optoelectronic properties significantly. The functionalization on the heteroatoms allows for facile derivation and incorporation of substitutes to further tune the properties. Small geometry variations between the ground, anionic/cationic, the first excited singlet and triplet states were observed due to the very rigid ladder-type coplanar backbone. Ladder-type polycarbazole was predicted to have the highest HOMO and LUMO energy levels, polyphosphafluorene oxide have the lowest HOMO energy level, polyborafluorene have the lowest LUMO energy level and bandgap, and polysulfafluorene has the highest bandgap and triplet energy. The ladder-type carbazole and borafluorene show the highest hole and electron injection abilities respectively; while sulfafluorene has the highest electron transfer rate. Most ladder-type heterofluorenes show bipolar charge transport character suggested by the reorganization energy. All of them have significantly short effective conjugation length in comparison with linear conjugated polymers. Their absorption and emission spectra were also simulated and discussed. The diversified electronic and optical properties of the ladder-type polyheterofluorenes with the different incorporated heteroatom and the substituent on it indicate their broad potential applications in organoelectronics.
Recently, there has been remarkable progress of the host-guest doped pure organic room-temperature phosphorescence (RTP) materials. However, it remains a great challenge to develop highly efficient host-guest doping systems. In this study, we have successfully developed a heavy atom free pure organic molecular doped system (benzophenone-thianthrene, respectively) with efficient RTP through a simple host-guest doping strategy. Furthermore, by optimizing the doping ratios, the host-guest material with a molar ratio of 100:1 presented an efficient RTP emission with 46% quantum efficiency and a long lifetime of up to 9.17 ms under ambient conditions. This work will provide an effective way to design new organic doping systems with RTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.