To full utilization of crushed straw in civil engineering industry is necessary to know its technical parameters. During previous projects on VŠB – TUO, Faculty of Civil Engineering have found parameters like settlement, thermal conductivity or airborne sound insulation. The research on these parameters have had favorable results, therefore the research is going on and other characteristics of crushed straw are finding out. These days the research team deals with determination of important fire characteristics of crushed straw. Fire characteristics play substantial character by building materials and their design in buildings. Nature materials are generally regarded as flammable. If some material is pressed, the same rule as in the phonebook – if you ignite one sheet of paper, it burns. But if you try to ignite the whole phonebook, it will be not so easy. This article is reported the first step of research on the reaction to fire. This is the preliminary classification of crushed straw into reaction to fire. The test was made according to methods which are described below. There are some changes in methods due to different structures of crushed straw.
This paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.
This article is focused on an experimental measurement of settlement of blown insulation from crushed straw. Straw has appeared like building material in recent years. It is ecological and cheap building material which is required for sustainable construction. Straw is usually used in form of bales. These are generally used like thermal insulation filling the supporting structure. An alternative to straw bales can be crushed straw. Crushed straw is not used in building industry currently. Its thermal insulating properties and structure are appropriate to use it like blown or loose thermal insulation. The experimental measurement was necessary to verify application of crushed straw by blowing or bulk and to find out values of settlement. Results of this measurement are described in this article.
Straw bales can be used as a relatively cheap and ecological building material for buildings. Design of straw buildings is currently based on empirical knowledge although it would be very helpful to have more information about material properties for designing and realization of straw bales houses. Article discuses load - deformation behavior of straw bales in laboratory conditions and evaluate the modulus of elasticity of local straw bales. Deformation characteristics of straw bales can be very useful for the design of straw buildings.
With regard to the current European trends in civil engineering and sustainability are still explored new building materials. In this case it is ideal to use natural materials such as straw. Its use as a building material is both ecological and economical. Excellent thermal insulation properties of straw have been known for centuries but the aim of this paper and the measurements were also demonstrate air-tightness and acoustic properties of a straw houses in the Czech Republic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.