Objective. The aim of the study is to investigate the role and possible mechanism of fascin-1 (FSCN1) in the invasion, migration, glycolysis, and epithelial-mesenchymal transition (EMT) of prostate cancer. Methods. Real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to determine the mRNA expression level of FSCN1 in prostate cancer tissues and prostate cancer cells PC-3 and DU145. The transwell and the scratch test were applied to detect the invasion and migration abilities of cells, respectively. A metabolic assay was used for measuring the glucose consumption, lactate production, and the extracellular acidification rate (ECAR) in cells; western blot was used for checking FSCN1, EMT, and yes-associated protein/transcriptional co-activators with the PDZ-binding motif (YAP/TAZ) signaling pathway-related protein expression level in cells or tissues. Results. FSCN1 was significantly highly expressed in prostate cancer tissues and cells. On the one hand, interference with the expression of FSCN1 could inhibit the invasion, migration, EMT, and glycolysis of prostate cancer cells. On the other hand, overexpression of FSCN1 promoted the invasion, migration, EMT, and glycolysis of prostate cancer cells. Besides, further mechanistic studies revealed that FSCN1 could activate the YAP/TAZ signaling pathway in prostate cancer cells. Conclusion. FSCN1 promotes invasion, migration, EMT, and glycolysis in prostate cancer cells by activating the YAP/TAZ signaling pathway. FSCN1 may be used as a biomarker for the diagnosis or treatment in prostate cancer.
The instantaneous overvoltages from the load side can cause damages of high-power thyristors in conventional pulsed power supply topologies, especially in cases of numerous pulse-forming units that operate together with discharge time intervals. The instantaneous overvoltages from the load side, which leads to high reverse recovery currents in high-power thyristors, can be induced by load mutations in the electromagnetic launching field. This paper establishes circuit models of PPS topologies, and investigates effects of the initial voltage of the energy-storage capacitor, the discharge time intervals, and the load resistance on the reverse recovery currents in high-power thyristors. To overcome the shortcomings of conventional PPS topologies, an improved PPS topology is developed. The improved PPS topology applies coupling inductor and resistance-capacitance snubber techniques, which can absorb the surge energy from the load side and reduce the reverse recovery currents in high-power thyristors. The simulation technique has been applied to validate theoretical analysis and the proposed model.
The trigger circuits of high-power thyristors in pulsed power supply (PPS) contain a large number of pulse transformers, switching MOSFETs (SMFETs) and other passive devices. Fast on-off of SMFETs and pulse transformers often lead to differential mode conducted interference (DMCI) problems in trigger circuits of high-power thyristors. This paper mainly disscusses DMCI problems in trigger circuits of high-power thyristors in the following aspects: initially, circuit models of high-frequency parasitic parameters of pulse transformer and SMFET are established; next, principles of DMCI in trigger circuits of high-power thyristors are investigated; furthermore, DMCI suppression methods are also analyzed; ultimately, experiments have been carried out to verify the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.