With the boom of flexible electronic products and wearable devices, flexible energy storage devices, for example, supercapacitors with high performance, are attracting increasing interest. A flexible water-deactivated polyelectrolyte hydrogel electrolyte with good mechanical properties and high ionic conductivity was prepared by using an anionic polymer, carboxy methyl cellulose, and a cationic monomer, methacrylamidopropyltrimethyl ammonium chloride. It was then applied in a supercapacitor with flexible activated carbon electrodes. This flexible supercapacitor possesses a high operating voltage of 2.1 V owing to the low electrochemical activity for water within the hydrogel as a result of the 'molecular cages' effect and hydrophilic interactions between functional groups and surrounding water molecules. Furthermore, this supercapacitor exhibits good flexibility and tailorability. As the first example of water-deactivated polyelectrolyte hydrogel electrolytes in applications involving flexible high-voltage supercapacitors, this work provides a platform for the design of energy storage devices with high energy density for flexible and wearable electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.