Background Acquired metastasis and invasion of cancer cells during radiotherapy are in part due to induction of epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, which are mediated by TGF-β signaling. Here we evaluated the anti-metastatic therapeutic potential of vactosertib, an orally bioavailable TGF-β type I receptor (activin receptor-like kinase 5, ALK5) inhibitor, via suppression of radiation-induced EMT and CSC properties, oxidative stress generation, and breast to lung metastasis in a breast cancer mouse model and breast cancer cell lines. Materials and methods Co-treatment of vactosertib with radiation was investigated in the 4T1-Luc allografted BALB/c syngeneic mouse model and in 4T1-Luc and MDA-MB-231 cells. The anti-metastatic therapeutic potential of vactosertib in breast cancer was investigated using fluorescence immunohistochemistry, real-time quantitative reverse transcription-polymerase chain reaction, western blotting, wound healing assay, mammosphere formation assay, and lung metastasis analysis in vitro and in vivo. Results Radiation induced TGF-β signaling, EMT markers (Vimentin, Fibronectin, Snail, Slug, Twist, and N-cadherin), CSC properties (expression of pluripotent stem cell regulators, mammosphere forming ability), reactive oxygen species markers (NOX4, 4-HNE), and motility of breast cancer cells in vitro and in vivo. Vactosertib attenuated the radiation-induced EMT and CSC properties by inhibiting ROS stress in breast cancer. Moreover, vactosertib combined with radiation showed a significant anti-metastatic effect with suppression of breast to lung metastasis in vivo. Conclusions These results indicate that inhibition of TGF-β signaling with vactosertib in breast cancer patients undergoing radiotherapy would be an attractive strategy for the prevention of cancer metastasis and recurrence.
Fetal alcohol syndrome (FAS) is a developmental and congenital disorder characterized by neurocognitive impairment, structural defects, and growth restriction due to prenatal alcohol exposure.The estimated global prevalence of alcohol use during pregnancy is 9.8%, and the estimated prevalence of FAS in the general population is 14.6 per 10,000 people. In Korea, the estimated prevalence of alcohol use during pregnancy is 16%, and the prevalence of FAS is 18-51 per 10,000 women, which is higher than the global prevalence. Women's alcohol consumption rates have increased, especially in women of childbearing age. This could increase the incidence of FAS, leading to higher medical expenses and burden on society. Alcohol is the single most important teratogen that causes FAS, and there is no safe trimester to drink alcohol and no known safe amount of alcohol consumption during pregnancy. Thus, physicians should assess women's drinking patterns in detail and provide education on FAS to women by understanding its pathophysiology. Moreover, the prevention of FAS requires long-term care with a multidisciplinary approach.
Radio-resistance resulting from radiotherapy-induced fibrosis is a major clinical obstacle in breast cancer treatment because it typically leads to cancer recurrence, treatment failure, and patient death. Transforming growth factor-β (TGF-β) is a key signal messenger in fibrosis, which plays an important role in radiation-induced fibrosis and cancer stem cell (CSC) development, may be mediated through the generation of oxidative stress. This study was conducted to confirm the efficacy of vactosertib, a TGF-β/ALK5 inhibitor, as a potent inhibitor in radiation-induced oxidative stress generation, fibrosis and CSC development. We used a 4T1-Luc allograft BALB/c syngeneic mouse model and 4T1-Luc and MDA-MB-231 cells for histological analysis, qRT-PCR, western blotting, ROS analysis, mammosphere formation analysis, monolayer fluorescence imaging analysis. Radiotherapy induces TGF-β signaling, oxidative stress markers (4-HNE, NOX2, NOX4, PRDX1, NRF2, HO-1, NQO-1), fibrosis markers (PAI-1, α-SMA, FIBRONECTIN, COL1A1), and CSC properties. However, combination therapy with vactosertib not only inhibits these radiation-induced markers and properties by blocking TGF-β signaling, but also enhances the anticancer effect of radiation by reducing the volume of breast cancer. Therefore, these data suggest that vactosertib can effectively reduce radiation fibrosis and resistance in breast cancer treatment by inhibiting radiation-induced TGF-β signaling and oxidative stress, fibrosis, and CSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.