Porous modification is a general approach to endowing the rigid inorganic thermoelectric (TE) materials with considerable flexibility, however, by which the TE performances are severely sacrificed. Thus, there remains an ongoing struggle against the trade-off between TE properties and flexibility. Herein, we develop a novel strategy to combine BiTe thick film with ubiquitous cellulose fibers (CFs) via an unbalanced magnetron sputtering technique. Owing to the nano-micro hierarchical porous structures and the excellent resistance to crack propagation of the BiTe/CF architectures, the obtained sample with a nominal BiTe deposition thickness of tens of micrometers exhibits excellent mechanically reliable flexibility, of which the bending deformation radius could be as small as a few millimeters. Furthermore, the BiTe/CF with rational internal resistance and tailorable shapes and dimensions are successfully fabricated for practical use in TE devices. Enhanced Seebeck coefficients are observed in the BiTe/CF as compared to the dense BiTe films, and the lattice thermal conductivity is remarkably reduced due to the strong phonon scattering effect. As a result, the TE figure of merit, ZT, is achieved as high as ∼0.38 at 473 K, which competes with the best flexible TEs and can be further improved by optimizing the carrier concentrations. We believe this developed technique not only opens up a new window to engineer flexible TE materials for practical applications but also promotes the robust development of the fields, such as paper-based flexible electronics and thin-film electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.