Phosphorylated celluloses (PCFs) were obtained via reaction of microcrystalline cellulose with phosphorous acid in molten urea. Fourier transform infrared spectroscopy and scanning electron microscopy were used to observe the chemical structure and microstate of the PCFs. A flame retardant glutaraldehyde cross‐linked poly (vinyl alcohol)/PCF aerogel was fabricated using a melt cross‐link and freeze‐dried method. The results of thermogravimetric analysis confirmed that the thermal stability of the poly(vinyl alcohol) (PVA) aerogels incorporating PCF is more outstanding. The peak of heat release rate (PHRR) and the total heat release (THR) values of the PCA/PCF10 aerogel deceased obviously by 33.8 and 64%, respectively, compared to the corresponding values for the pure PVA aerogel; these changes confirm that the PCA/PCF aerogel had better flame‐retardant properties than the pure PVA aerogel. Moreover, the fire performance index and fire growth index indicate that the introduction of PCF would diminish the occurrence of fire.
Polybenzoxazine (PBa) composites based on phosphorous-containing bio-based furfurylamine type benzoxazines (D-fu) and bisphenol-A type benzoxazines (Ba) were developed for flame retardation. The structure of D-fu was analyzed by Fourier transform infrared (FTIR) spectroscopy and 1H-NMR spectroscopy. The curing temperature of Ba/D-fu mixtures was systematically studied by differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) demonstrated the excellent char formation ability of the PBa composites with the addition of phosphorous-containing D-fu. The flame retardancy of the PBa composite materials was tested by the limited oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter (CONE). The LOI and UL-94 level of PBa/PD-fu-5% reached 34 and V0 rate, respectively. Notably, the incorporation of 5% D-fu into PBa led to a decrease of 21.9% at the peak of the heat-release rate and a mass-loss reduction of 8.0%. Moreover, the fire performance index increased, which demonstrated that the introduction of D-fu can diminish fire occurrence. The role of D-fu in the condensed and gas phases for the fire-resistant mechanism of the PBa matrix was supported by SEM-EDS and TGA/infrared spectrometry (TG-FTIR), respectively. Dynamic mechanical analysis (DMA) revealed that the Tg of PBa flame-retardant composites was around 230 °C. Therefore, PBa composites are promising fire-retardant polymers that can be applied as high-performance functional materials.
Phosphated cellulose (PCF) was synthesized based on urea, phosphated acid and cellulose. The structure of the PCF was confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy coupled with the Energy Dispersive Spectrometer (SEM-EDS). Benzoxazine (Ba)/PCF hybrid materials were fabricated and thermally cured to prepare polybenzoxazine composites (PBa/PCF). The effects of PCF on the curing temperature of Ba were analyzed through differential scanning calorimetry (DSC). The thermogravimetric (TGA) results demonstrated an increased char residue of 50% for the PBa composites incorporating PCF-5% compared with the pure PBa. The peak heat release rate (PHRR) and total heat release (THR) values of the PBa/PCF-5% composites clearly decreased by 58.1% and 16.5% compared to those of the pristine PBa. The smoke released from the PBa/PCF system significantly reduced with the loading of PCF. Moreover, the limited oxygen index (LOI) and vertical burning test level (UL-94) of PBa/PCF-5% reached up to 31 and V0. The flame retardant mechanism of the PCF in the PBa matrix was investigated TG-FTIR and char residues analysis. Finally, the dynamical mechanical analysis (DMA) results demonstrated that the Tg of the PBa/PCF composites was approximately 230 °C, which does not affect further applications of PBa composites.
In this work, exfoliated α-zirconium phosphate (α-ZrP) and phosphated cellulose (PCF) were employed to synthesize poly(vinyl alcohol) composite aerogels (PVA/PCF/α-ZrP) with excellent flame retardancy through the multi-directional freezing method. The peak heat release rate (PHRR), total smoke release (TSR), and CO production (COP) of the (PVA/PCF10/α-ZrP10-3) composite aerogel were considerably decreased by 42.3%, 41.4%, and 34.7%, as compared to the pure PVA aerogel, respectively. Simultaneously, the limiting oxygen index (LOI) value was improved from 18.1% to 28.4%. The mechanistic study of flame retardancy showed evidence that PCF and α-ZrP promoted the crosslinking and carbonization of PVA chains to form a barrier, which not only served as insulation between the material and the air, but also significantly reduced the emissions of combustible toxic gases (CO2, CO). In addition, the multi-directional freezing method further improved the catalytic carbonization process. This mutually advantageous strategy offers a new strategy for the preparation of composite aerogels with enhanced fire resistance.
Bisphenol A type benzoxazine (Ba) monomers and 10-(2, 5-dihydroxyphenyl)-10- hydrogen-9- oxygen-10- phosphine-10- oxide (DOPO-HQ) were employed to prepare flame retardant and heat insulated polybenzoxazine (PBa) composite aerogels. The successful preparation of PBa composite aerogels was confirmed by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The thermal degradation behavior and flame-retardant properties of the pristine PBa and PBa composite aerogels were investigated with thermogravimetric analysis (TGA) and cone calorimeter. The initial decomposition temperature of PBa decreased slightly after incorporating DOPO-HQ, increasing the char residue amount. The incorporation of 5% DOPO-HQ into PBa led to a decrease of 33.1% at the peak of the heat-release rate and a decrease of 58.7% in the TSP. The flame-retardant mechanism of PBa composite aerogels was investigated by SEM, Raman spectroscopy, and TGA coupled with infrared spectrometry (TG-FTIR). The aerogel has advantages such as a simple synthesis procedure, easy amplification, lightweight, low thermal conductivity, and good flame retardancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.