Aerobic denitrification microbes have great potential to solve the problem of NO3−-N accumulation in industrialized recirculating aquaculture systems (RASs). A novel salt-tolerant aerobic denitrifier was isolated from a marine recirculating aquaculture system (RAS) and identified as Halomonas alkaliphile HRL-9. Its aerobic denitrification performance in different dissolved oxygen concentrations, temperatures, and C/N ratios was studied. Investigations into nitrogen balance and nitrate reductase genes (napA and narG) were also carried out. The results showed that the optimal conditions for nitrate removal were temperature of 30 °C, a shaking speed of 150 rpm, and a C/N ratio of 10. For nitrate nitrogen (NO3−-N) (initial concentration 101.8 mg·L−1), the sole nitrogen source of the growth of HRL-9, the maximum NO3−-N removal efficiency reached 98.0% after 24 h and the maximum total nitrogen removal efficiency was 77.3% after 48 h. Nitrogen balance analysis showed that 21.7% of NO3−-N was converted into intracellular nitrogen, 3.3% of NO3−-N was converted into other nitrification products (i.e., nitrous nitrogen, ammonium nitrogen, and organic nitrogen), and 74.5% of NO3−-N might be converted to gaseous products. The identification of functional genes confirmed the existence of the napA gene in strain HRL-9, but no narG gene was found. These results confirm that the aerobic denitrification strain, Halomonas alkaliphile HRL-9, which has excellent aerobic denitrification abilities, can also help us understand the microbiological mechanism and transformation pathway of aerobic denitrification in RASs.
Two kinds of thermoresponsive 2-hydroxy-3-alkoxypropyl hydroxyethyl celluloses (HAPEC) were prepared by grafting butyl and isopropyl glycidyl ethers onto hydroxyethyl celluloses (HEC). The HAPEC was characterized by 1H NMR, 13C NMR, and 2D HSQC NMR. The lower critical solution temperature (LCST) of HAPEC can be tuned by changing the molar substitution (MS). The LCST decreased with the increasing MS of the alkyl chains. The HAPEC concentration, salt concentration, and organic solvent concentration had a marked influence on LCST. In addition, the differences of thermoresponsive properties between the two kinds of HAPECs were investigated. 2-Hydroxy-3-butoxypropyl hydroxyethyl cellulose (HBPEC), which has longer hydrophobic side chains, demonstrated a lower LCST when both HBPEC and 2-hydroxy-3-isopropoxypropyl hydroxyethyl cellulose (HIPEC) possessed similar MS values. HBPEC, which has longer hydrophobic side chains, exhibited thermoresponsive flocculation behavior, and the critical flocculation temperature (CFT) was adjusted in the range from 27.3 to 51.2 °C by changing the molar substitution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.