The Integrated Microbial Genome/Virus (IMG/VR) system v.2.0 (https://img.jgi.doe.gov/vr/) is the largest publicly available data management and analysis platform dedicated to viral genomics. Since the last report published in the 2016, NAR Database Issue, the data has tripled in size and currently contains genomes of 8389 cultivated reference viruses, 12 498 previously published curated prophages derived from cultivated microbial isolates, and 735 112 viral genomic fragments computationally predicted from assembled shotgun metagenomes. Nearly 60% of the viral genomes and genome fragments are clustered into 110 384 viral Operational Taxonomic Units (vOTUs) with two or more members. To improve data quality and predictions of host specificity, IMG/VR v.2.0 now separates prokaryotic and eukaryotic viruses, utilizes known prophage sequences to improve taxonomic assignments, and provides viral genome quality scores based on the estimated genome completeness. New features also include enhanced BLAST search capabilities for external queries. Finally, geographic map visualization to locate user-selected viral genomes or genome fragments has been implemented and download options have been extended. All of these features make IMG/VR v.2.0 a key resource for the study of viruses.
Motivation Two key steps in the analysis of uncultured viruses recovered from metagenomes are the taxonomic classification of the viral sequences and the identification of putative host(s). Both steps rely mainly on the assignment of viral proteins to orthologs in cultivated viruses. Viral Protein Families (VPFs) can be used for the robust identification of new viral sequences in large metagenomics datasets. Despite the importance of VPF information for viral discovery, VPFs have not yet been explored for determining viral taxonomy and host targets. Results In this work we classified the set of VPFs from the IMG/VR database and developed VPF-Class. VPF-Class is a tool that automates the taxonomic classification and host prediction of viral contigs based on the assignment of their proteins to a set of classified VPFs. Applying VPF-Class on 731K uncultivated virus contigs from the IMG/VR database, we were able to classify 363K contigs at the genus level and predict the host of over 461K contigs. In the RefSeq database, VPF-class reported an accuracy of nearly 100% to classify dsDNA, ssDNA and retroviruses, at the genus level, considering a membership ratio and a confidence score of 0.2. The accuracy in host prediction was 86.4%, also at the genus level, considering a membership ratio of 0.3 and a confidence score of 0.5. And, in the prophages dataset, the accuracy in host prediction was 86% considering a membership ratio of 0.6 and a confidence score of 0.8. Moreover, from the Global Ocean Virome dataset, over 817K viral contigs out of 1 million were classified. Availability The implementation of VPF-Class can be downloaded from https://github.com/biocom-uib/vpf-tools Supplementary information http://bioinfo.uib.es/~recerca/VPF-Class/
BackgroundLateral, or Horizontal, Gene Transfers are a type of asymmetric evolutionary events where genetic material is transferred from one species to another. In this paper we consider LGT networks, a general model of phylogenetic networks with lateral gene transfers which consist, roughly, of a principal rooted tree with its leaves labelled on a set of taxa, and a set of extra secondary arcs between nodes in this tree representing lateral gene transfers. An LGT network gives rise in a natural way to a principal phylogenetic subtree and a set of secondary phylogenetic subtrees, which, roughly, represent, respectively, the main line of evolution of most genes and the secondary lines of evolution through lateral gene transfers.ResultsWe introduce a set of simple conditions on an LGT network that guarantee that its principal and secondary phylogenetic subtrees are pairwise different and that these subtrees determine, up to isomorphism, the LGT network. We then give an algorithm that, given a set of pairwise different phylogenetic trees on the same set of taxa, outputs, when it exists, the LGT network that satisfies these conditions and such that its principal phylogenetic tree is and its secondary phylogenetic trees are .Electronic supplementary materialThe online version of this article (doi:10.1186/s13015-015-0059-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.