PURPOSE:The increase in fructose consumption is paralleled by a higher incidence of obesity worldwide. This monosaccharide is linked to metabolic syndrome, being associated with hypertriglyceridemia, hypertension, insulin resistance and diabetes mellitus. It is metabolized principally in the liver, where it can be converted into fatty acids, which are stored in the form of triglycerides leading to NAFLD. Several models of NAFLD use diets high in simple carbohydrates. Thus, this study aimed to describe the major metabolic changes caused by excessive consumption of fructose in humans and animals and to present liver abnormalities resulting from high intakes of fructose in different periods of consumption and experimental designs in Wistar rats. METHODS: Two groups of rats were fasted for 48 hours and reefed for 24 or 48 hours with a diet containing 63% fructose. Another group of rats was fed an diet with 63% fructose for 90 days. RESULTS: Refeeding for 24 hours caused accumulation of large amounts of fat, compromising 100% of the hepatocytes. The amount of liver fat in animals refed for 48 hours decreased, remaining mostly in zone 2 (medium-zonal). In liver plates of Wistar rats fed 63% fructose for 45, 60 and 90 days it's possible to see that there is an increase in hepatocytes with fat accumulation according to the increased time; hepatic steatosis, however, is mild, compromising about 20% of the hepatocytes. CONCLUSIONS: Fructose is highly lipogenic, however the induction of chronic models in NAFLD requires long periods of treatment. The acute supply for 24 or 48 hours, fasted rats can cause big changes, liver steatosis with macrovesicular in all lobular zones. Key words: Fructose. Fatty Liver. Diet. Rats. RESUMO OBJETIVO:O aumento do consumo de frutose é concomitante a maior incidência mundial de obesidade. Este monossacarídeo está relacionado à Síndrome Metabólica, sendo vinculado à hipertrigliceridemia, hipertensão arterial, resistência à insulina e diabetes mellitus. É metabolizada principalmente no fígado, onde pode ser convertida em ácidos graxos, os quais serão estocados na forma de trigligérides ocasionando a esteatose hepática não alcoólica (NAFLD). Vários modelos de NAFLD utilizam dietas ricas em carboidratos simples. Desta forma, este trabalho teve como objetivos descrever as principais alterações metabólicas causadas pelo consumo excessivo de frutose em humanos e em animais e apresentar as alterações hepáticas decorrentes da alta ingestão de frutose em diferentes períodos de consumo e desenhos experimentais em ratos Wistar. MÉTODOS: Dois grupos de ratos Wistar foram mantidos em jejum durante 48 horas e realimentados por 24 ou 48 horas com dieta contendo 63% de frutose. Outro grupo de ratos Wistar foi alimentado com 63% de frutose durante 90 dias. RESULTADOS: A realimentação por 24 horas provocou acúmulo de grande quantidade de gordura. A quantidade de gordura hepática nos animais realimentados por 48 horas diminuiu, mantendo-se principalmente nas zona 2 (medio-zonal). Em fígados de ratos Wi...
Obesity and related diseases are becoming more prevalent. Conjugated linoleic acid (CLA) might be a useful coadjutant treatment helping to decrease fat mass. However, the precise impact of CLA is unclear because the decreased body fat mass is followed by an increase in insulin resistance. This study aimed to evaluate some of the consequences of a high dose of CLA in rats fed a normal low fat or a high fat diet for 30 days. Male Wistar rats were separated into 4 groups (each n = 10): Control group receiving 7% fat (soybean oil); CLA group receiving 4% soybean oil and 3% CLA mixture; animal fat (AF) group, receiving 45% fat (lard); and animal fat plus CLA (AF+CLA) group, receiving 42% lard and 3% CLA mixture. The CLA mixture contained 39.32 mole% c9,t11-CLA and 40.50 mole% t10,c12-CLA. After 30 days, both CLA groups (CLA and AF+CLA groups) developed insulin resistance, with an increase in glucose in the fasting state and in an insulin tolerance test. The CLA group had increased liver weight and percentage of saturated fatty acids in liver and adipose tissue. Feeding the high fat diet resulted in increased hepatic triacylglycerol accumulation and this was exacerbated by dietary CLA. It is concluded that a high dose of CLA mixture increases insulin resistance and exacerbates hepatic steatosis when combined with a high fat diet.
Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG) concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3) fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO) improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed) period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α) gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP), fatty acid synthase (FAS) and microsomal triglyceride transfer protein (MTTP). Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet.
Osteoma is an uncommon bone formation documented in avian species and other animals. A blue-fronted Amazon parrot (Amazona aestiva) with clinical respiratory symptoms was examined because of a hard mass present on the left nostril. Radiographs suggested a bone tumor, and the mass was surgically excised. Histopathologic examination revealed features of an osteoma. To our knowledge, this is the first description of an osteoma in a blue-fronted Amazon parrot. Osteoma should be considered as a differential diagnosis in birds with respiratory distress and swelling of the nostril.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.