A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ-the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/ WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June-July-August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.
Land surface temperature (LST) is a key variable in surface-atmosphere energy and water exchanges. The main goals of this study are to (i) evaluate the LST of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim and ERA5 reanalyses over Iberian Peninsula using the Satellite Application Facility on Land Surface Analysis (LSA-SAF) product and to (ii) understand the main drivers of the LST errors in the reanalysis. Simulations with the ECMWF land-surface model in offline mode (uncoupled) were carried out over the Iberian Peninsula and compared with the reanalysis data. Several sensitivity simulations were performed in a confined domain centered in Southern Portugal to investigate potential sources of the LST errors. The Copernicus Global Land Service (CGLS) fraction of green vegetation cover (FCover) and the European Space Agency’s Climate Change Initiative (ESA-CCI) Land Cover dataset were explored. We found a general underestimation of daytime LST and slightly overestimation at night-time. The results indicate that there is still room for improvement in the simulation of LST in ECMWF products. Still, ERA5 presents an overall higher quality product in relation to ERA-Interim. Our analysis suggested a relation between the large daytime cold bias and vegetation cover differences between (ERA5 and CGLS FCocver) with a correlation of −0.45. The replacement of the low and high vegetation cover by those of ESA-CCI provided an overall reduction of the large Tmax biases during summer. The increased vertical resolution of the soil at the surface, has a positive impact, but much smaller when compared with the vegetation changes. The sensitivity of the vegetation density parameter, that currently depends on the vegetation type, provided further proof for a needed revision of the vegetation in the model, as there is a reasonable correlation between this parameter and the Tmax mean errors when using the ESA-CCI vegetation cover (while the same correlation cannot be reproduced with the original model vegetation). Our results support the hypothesis that vegetation cover is one of the main drivers of the LST summertime cold bias in ERA5 over Iberian Peninsula.
Abstract:The European Organization for the Exploitation of Meteorological Satellites' (EUMETSAT) Meteosat satellites provide the unique opportunity to compile a 30+ year land surface temperature (LST) climate data record. Since the Meteosat instrument on-board Meteosat 2-7 is equipped with a single thermal channel, single-channel LST retrieval algorithms are used to ensure consistency across Meteosat satellites. The present study compares the performance of two single-channel LST retrieval algorithms: (1) A physical radiative transfer-based mono-window (PMW); and (2) a statistical mono-window model (SMW). The performance of the single-channel algorithms is assessed using a database of synthetic radiances for a wide range of atmospheric profiles and surface variables. The two single-channel algorithms are evaluated against the commonly-used generalized split-window OPEN ACCESSRemote Sens. 2015, 7 13140(GSW) model. The three algorithms are verified against more than 60,000 LST ground observations with dry to very moist atmospheres (total column water vapor (TCWV) 1-56 mm). Except for very moist atmospheres (TCWV > 45 mm), results show that Meteosat single-channel retrievals match those of the GSW algorithm by 0.1-0.5 K. This study also outlines that it is possible to put realistic uncertainties on Meteosat single-channel LSTs, except for very moist atmospheres: simulated theoretical uncertainties are within 0.3-1.0 K of the in situ root mean square differences for TCWV < 45 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.