As sensor-rich mobile devices became a commodity, more opportunities appeared for the creation of location-aware services. While GPS is a well established solution for outdoor localization, there is still no standard solution for localization indoors. This paper presents a novel accurate indoor positioning mechanism that is meant to run in common smartphones to be a readily and widely available solution. The system is based on multiple gait-model based filtering techniques for accurate movement quantification in combination with an advanced fused positioning mechanism that leverages sequences of opportunistic observations towards an accurate localization process. Magnetic field fluctuations, Wi-Fi readings and movement data are incrementally matched with a feature spot map containing multi-dimensional spatially-related features that characterize the building. A novel and convenient way of mapping the architectural and environmental properties of buildings is also introduced, which avoids the burden normally associated with the process. The system has been evaluated by multiple users in open and crowded spaces where overall median localization errors between 1.11 m and 1.68 m were obtained. While the reported errors are already satisfactory in the context of indoor localization, improvements may be readily achieved through the inclusion of additional reference features. High accuracy performance coupled with an opportunistic and infrastructure-free approach creates a very desirable solution for the indoor localization market doge
Governmental institutions are employing artificial intelligence techniques to deal with their specific problems and exploit their huge amounts of both structured and unstructured information. In particular, natural language processing and machine learning techniques are being used to process citizen feedback. In this paper, we report on the use of such techniques for analyzing and classifying complaints, in the context of the Portuguese Economic and Food Safety Authority. Grounded in its operational process, we address three different classification problems: target economic activity, implied infraction severity level, and institutional competence. We show promising results obtained using feature-based approaches and traditional classifiers, with accuracy scores above 70%, and analyze the shortcomings of our current results and avenues for further improvement, taking into account the intended use of our classifiers in helping human officers to cope with thousands of yearly complaints.
This paper presents the computational models used by the authors at MARETEC/IST for hydrodynamic design and analysis of horizontal axis marine current turbines. The models combine a lifting line method for the optimization of the turbine blade geometry and an Integral Boundary Element Method (IBEM) for the hydrodynamic analysis. The classical lifting line optimization is used to determine the optimum blade circulation distribution for maximum power extraction. Blade geometry is determined with simplified cavitation requirements and limitations due to mechanical strength. The application of the design procedure is illustrated for a two-bladed 300 kW marine current turbine with a diameter of 11 meters. The effects of design tip-speed-ratio and the influence of blade section foils on power and cavitation inception are discussed. A more complete analysis may be carried out with an IBEM in steady and unsteady flow conditions. The IBEM has been extended to include wake alignment. The results are compared with experimental performance data available in the literature.
Several pathologies can alter the way people walk, i.e., their gait. Gait analysis can be used to detect such alterations and, therefore, help diagnose certain pathologies or assess people’s health and recovery. Simple vision-based systems have a considerable potential in this area, as they allow the capture of gait in unconstrained environments, such as at home or in a clinic, while the required computations can be done remotely. State-of-the-art vision-based systems for gait analysis use deep learning strategies, thus requiring a large amount of data for training. However, to the best of our knowledge, the largest publicly available pathological gait dataset contains only 10 subjects, simulating five types of gait. This paper presents a new dataset, GAIT-IT, captured from 21 subjects simulating five types of gait, at two severity levels. The dataset is recorded in a professional studio, making the sequences free of background camouflage, variations in illumination and other visual artifacts. The dataset is used to train a novel automatic gait analysis system. Compared to the state-of-the-art, the proposed system achieves a drastic reduction in the number of trainable parameters, memory requirements and execution times, while the classification accuracy is on par with the state-of-the-art. Recognizing the importance of remote healthcare, the proposed automatic gait analysis system is integrated with a prototype web application. This prototype is presently hosted in a private network, and after further tests and development it will allow people to upload a video of them walking and execute a web service that classifies their gait. The web application has a user-friendly interface usable by healthcare professionals or by laypersons. The application also makes an association between the identified type of gait and potential gait pathologies that exhibit the identified characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.