Bio-based surfactants are surface-active compounds derived from oil and fats through the production of oleochemicals or from sugar. Various applications of bio-based surfactants include household detergents, personal care, agricultural chemicals, oilfield chemicals, industrial and institutional cleaning, and others. Due to the stringent environmental regulations imposed by governments around the world on the use of chemicals in detergents, as well as growing consumer awareness of environmental concerns, there has been a strong demand in the market for bio-based surfactants. Bio-based surfactants are recognized as a greener alternative to conventional petrochemical-based surfactants because of their biodegradability and low toxicity. As a result, more research is being done on producing novel biodegradable surfactants, either from renewable resources or through biological processes (bio-catalysis or fermentation). This chapter discusses the various types, feedstocks, and applications of bio-based surfactants, as well as the industrial state-of-the-art and market prospects for bio-based surfactant production. In addition, relevant technological challenges in this field are addressed, and a way forward is proposed.
An environmentally friendly, biobased film was prepared from cellulose and lignin extracted from oil palm dried long fiber (DLF). DLF crude cellulose was first extracted from this lignocellulosic biomass by an alkaline pretreatment process at an elevated temperature (5.75 wt% NaOH, 200 °C, and 1 h), before it was carboxymethylated to obtain carboxymethyl cellulose (CMC). CMC is highly soluble in water, whereas lignin was precipitated out of the filtrate of the alkaline pretreatment process by adding acid to pH 2 (50 wt% H2SO4). The lignin/CMC films were synthesized at varying lignin concentrations of 0.25%, 0.5%, and 1% (w/v) in ethanolic solution with 0.25% (v/v) of glycerol; a neat CMC film was also prepared as a control. These lignin/CMC films were evaluated and compared for their morphological, physical, chemical, and thermal characteristics. The films displayed a brownish physical appearance, which was attributed to the natural color of lignin. The successful incorporation of lignin in the films was confirmed with the characteristic spectral bands of lignin in the mid-IR range (4000−400 cm−1). When measured with UV-vis spectrometer, the lignin/CMC films showed more enhanced UV blocking properties than the neat CMC film. The CMC films incorporated with lignin also showed slightly improved hydrophobicity and thermal stability. However, due to the low compatibility of lignin with CMC, the distribution of the lignin/CMC film was observed to be inhomogeneous in SEM images. Nonetheless, the addition of lignin to CMC in synthesizing biobased films is promising, potentially providing better properties that can be useful as biodegradable material.
Surfactant flooding is one of the successful techniques employed in enhanced oil recovery (EOR) to extract the remaining original oil in place after primary and secondary recoveries are performed. Selection of the right EOR surfactant is an important but demanding task due to a series of screening procedures that need to be executed to have a comprehensive evaluation. This article presents the experimental work done on the initial screening of ten surfactants from three different classes, namely nonionic, anionic, and amphoteric. The screening was completed with three consecutive series of testing, which are surfactant compatibility, phase behavior, and interfacial tension (IFT). Results showed that an anionic surfactant, sodium decylglucoside hydroxypropyl phosphate, passed all tests with the lowest IFT value of 8 × 10−3 mN/m at 0.1 wt% of surfactant concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.