Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.
Bioenergy is expected to contribute to mitigating climate change. One major source for bioenergy is woody biomass from forests, including logging residues, stumps, and whole trees from young dense stands. However, at increased extraction rates of woody biomass, the forest ecosystem, its biodiversity, and its ability to contribute to fundamental ecosystem services will be affected. We used simulation and optimization techniques to assess the impact of different management strategies on the supply of bioenergy and the trade-offs between wood fuel harvesting, biodiversity, and three other ecosystem services—reindeer husbandry, carbon storage, and recreation. The projections covered 100 years and a forest area of 3 million ha in northern Sweden. We found that the development of novel and cost-effective management systems for biomass outtake from young dense stands may provide options for a significant supply of bioenergy to the emerging bioeconomy, while at the same time securing biodiversity and important ecosystem values in future stand developments. In addition, there is potential to increase the extraction of harvest residues and stumps while simultaneously improving conditions for biodiversity and the amount of carbon stored in forest ecosystems compared to current levels. However, the projected continuing trend of increased forest density (in terms of basal area) has a negative impact on the potential for reindeer husbandry and recreation, which calls for researching new management strategies on landscape levels.
The European Union (EU) set clear climate change mitigation targets to reach climate neutrality, accounting for forests and their woody biomass resources. We investigated the consequences of increased harvest demands resulting from EU climate targets. We analysed the impacts on national policy objectives for forest ecosystem services and biodiversity through empirical forest simulation and multi-objective optimization methods. We show that key European timber-producing countries – Finland, Sweden, Germany (Bavaria) – cannot fulfil the increased harvest demands linked to the ambitious 1.5°C target. Potentials for harvest increase only exists in the studied region Norway. However, focusing on EU climate targets conflicts with several national policies and causes adverse effects on multiple ecosystem services and biodiversity. We argue that the role of forests and their timber resources in achieving climate targets and societal decarbonization should not be overstated. Our study provides insight for other European countries challenged by conflicting policies and supports policymakers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.