There is an urgent need to develop resilient agroecosystems capable of helping smallholder farmers adapt to climate change, particularly drought. In East Africa, diversification of maize-based cropping systems by intercropping with grain and tree legumes may foster productivity and resilience to adverse weather conditions. We tested whether intercropping enhances drought resistance and crop and whole-system yields by imposing drought in monocultures and additive intercrops along a crop diversity gradient—sole maize (Zea mays), sole pigeonpea (Cajanus cajan), maize-pigeonpea, maize-gliricidia (Gliricidia sepium, a woody perennial), and maize-pigeonpea-gliricidia—with and without fertilizer application. We developed and tested a novel low-cost, above-canopy rainout shelter design for drought experiments made with locally-sourced materials that successfully reduced soil moisture without creating sizeable artifacts for the crop microenvironment. Drought reduced maize grain yield under fertilized conditions in some cropping systems but did not impact pigeonpea grain yield. Whole-system grain yield and theoretical caloric and protein yields in two intercropping systems, maize-pigeonpea and maize-gliricidia, were similar to the standard sole maize system. Maize-pigeonepea performed most strongly compared to other systems in terms of protein yield. Maize-pigeonpea was the only intercrop that consistently required less land than its corresponding monocultures to produce the same yield (Land Equivalent Ratio >1), particularly under drought. Despite intercropping systems having greater planting density than sole maize and theoretically greater competition for water, they were not more prone to yield loss with drought. Our results show that maize-pigeonpea intercropping provides opportunities to produce the same food on less land under drought and non-drought conditions, without compromising drought resistance of low-input smallholder maize systems.
In Tanzania, the majority of the rural population still relies on fuelwood as their major source of cooking energy. The adaptation measures of small-scale farmers in response to increasing fuelwood scarcity play a key role in altering the course of nutrition insecurity, environmental degradation, and economic instability. This study delivers a classification of coping strategies that does not exist in the literature. Furthermore, it analyses the adaptation measures applied by small-scale farmers in the semi-arid region of Dodoma district in response to fuelwood scarcity. A comparison between two case study sites provides information on the choice of adaptation measures by households. Overall, 28 coping strategies from 24 studies are identified, then differentiated into preventive and acute measures that are arranged into eight clusters. The classification is then used as a codebook to identify applied coping strategies at two case study sites. In total, 23 adaptation measures, including two strategies not cited in the literature, were identified through 39 household interviews. This suggests that the majority of coping strategies applied are independently from regional and social conditions. The majority of the strategies applied at the case study sites and described in the literature are acute measures that do not tackle the underlying problem triggering forest degradation. It is observed that the adaptation measures across the case study sites are widely congruent, thus showing that acute strategies are not replaced by preventive strategies but rather co-exist.
A quantitative performance assessment of improved cooking stoves and traditional three-stone-fire stoves using a two-pot test design in Chamwino, Dodoma, Tanzania AbstractIn Tanzania, a majority of rural residents cook using firewood-based three-stone-fire stoves. In this study, quantitative performance differences between technologically advanced improved cooking stoves and three-stone-fire stoves are analysed.We test the performance of improved cooking stoves and three-stone-fire stoves using local cooks, foods, and fuels, in the semi-arid region of Dodoma in Tanzania. We used the cooking protocol of the Controlled Cooking Test following a two-pot test design. The findings of the study suggest that improved cooking stoves use less firewood and less time than three-stone-fire stoves to conduct a predefined cooking task.In total, 40 households were assessed and ask to complete two different cooking tasks: (1) a fast cooking meal (rice and vegetables) and (2) a slow cooking meal (beans and rice). For cooking task 1, the results show a significant reduction in firewood consumption of 37.1% by improved cooking stoves compared to traditional three-stone-fire stoves; for cooking task 2 a reduction of 15.6% is found. In addition, it was found that the time needed to conduct cooking tasks 1 and 2 was significantly reduced by 26.8% and 22.8% respectively, when improved cooking stoves were used instead of three-stone-fire-stoves.We observed that the villagers altered the initial improved cooking stove design, resulting in the so-called modified improved cooking stove. In an additional Controlled Cooking Test, we conducted cooking task 3: a very fast cooking meal (maize flour and vegetables) within 32 households. Significant changes between the initial and modified improved cooking stoves regarding firewood and time consumption were not detected.However, analyses show that both firewood and time consumption during cooking was reduced when large amounts (for 6-7 household members) of food were prepared instead of small amounts (for 2-3 household members).
Enhancing food security is one of the main goals of subsistence farmers in Sub-Saharan Africa. This study investigates the implementation of improved loam-made cooking stoves and its contribution to coping and livelihood strategies. Controlled combustion, air as well as smoke flue, and heat insulation facilitate the more efficient fuel consumption of improved cooking stoves compared to traditional stoves-namely three stone fires. Although the majority of small-scale farmers in Sub-Saharan Africa rely on the free public good of firewood, the increasing time needed for collecting firewood implies high opportunity costs for productive members of the family. The primary outcomes for users of improved stoves are reduced fuel consumption, greater safety, saved time, and reduced smoke in the kitchen.The paper illustrates part of the output, outcome, and impact of a participatory action research approach for implementing improved cooking stoves. Special emphasis was put on enabling the villagers to construct their stoves without external support, hence having locally manufactured stoves made of mud, bricks, and dried grass. The impact pathway of improved cooking stoves followed the training-of-trainers concept, where members of the initially established farmer groups were trained to construct stoves on their own. Special focus was given to knowledge exchange and knowledge transfer in order to increase firewood efficiency and overall satisfaction of users of improved cook stoves. Encouraging the members to further adapt the stoves enabled them to scale-up the construction of improved cooked stoves into a business model and increase dissemination while creating income. Although many important benefits, like time and knowledge gain, were identified by the farmers after adoption of the new technology, we found adoption rates differed significantly between regions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.