There has, in recent years, been a major revival of interest in glass-and glass-ceramic-to-metal seals and coatings for new applications. Experience dictates that many factors need to be taken into consideration in the successful design and manufacture of high-quality seals, particularly if an adequate component lifetime is to be achieved. For example, during their preparation, undesirable reactions may occur between diffusing metal species and glass constituents, and these can lead to the formation of highly localized internal stresses, which can initiate failure of a seal either during manufacture or, more seriously, whilst in service due to the influence of static fatigue. In the case of high-temperature systems, reactions under hostile operating conditions also need to be taken into consideration. In this review, the factors learnt from past experience that influence the formation and lifetime behaviour of glass and glass-ceramic/metal systems are briefly introduced, and their relevance to the newer applications including solid oxide fuel cell sealants and coatings on titanium for biomedical applications is discussed.
Engineering ceramics such as alumina, zirconia, silicon nitride and silicon carbide can now be manufactured reliably with reproducible properties. As such, they are of increasing interest to industry, particularly for use in demanding environments, where their thermomechanical performance is of critical importance, with applications ranging from fuel cells to cutting tools. One aspect common to virtually all applications of engineering ceramics is that eventually they must be joined with another material, most usually a metal. The joining of engineering ceramics to metals is not always easy. There are two main considerations. The first consideration is the basic difference in atomic bonding: the ionic or covalent bonding of the ceramic, compared to the metallic bond. The second consideration is the mismatch in the coefficient of thermal expansion. In general, ceramics have a lower coefficient of thermal expansion than metals and, if high tensile forces are produced in the ceramic, either as a consequence of operating conditions or from the joining procedure itself, failure can occur. The plethora of joining processes available will be reviewed in this article, placing them in context from both an academic and commercial perspective. Comment will be made on research reporting advances on known technology, as well as introducing 'newer' technologies developed over the last 10 years. Finally, reviews and commentary will be made on the potential applications of the various joining processes in the commercial environment.
a b s t r a c tAlumina ceramics with different levels of purity have been joined to themselves using an active braze alloy (ABA) Ag-35.3Cu-1.8Ti wt.% and brazing cycles that peak at temperatures between 815°C and 875°C for 2 to 300 min. The microstructures of the joints have been studied using scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. A limited number of joints prepared with the ABA Ag-26.7Cu-4.5Ti wt.% have also been studied. In terms of characterising the interfacial phases, efforts were made to understand the interfacial reactions, and to determine the influence of various brazing parameters, such as the peak temperature (T p ) and time at T p (s), on the microstructure. In addition, the extent to which impurities in the alumina affect the interfacial microstructure has been determined.Ti 3 Cu 3 O has been identified as the main product of the reactions at the ABA/alumina interfaces. At the shortest joining time used, this phase was observed in the form of a micron-size continuous layer in contact with the ABA, alongside a nanometre-size layer on the alumina that was mostly composed of c-TiO grains. Occasionally, single grains of Ti 3 O 2 were observed in the thin layer on alumina. In the joints prepared with Ag-35.3Cu-1.8Ti wt.%, the interfacial structure evolved considerably with joining time, eventually leading to a high degree of inhomogeneity across the length of the joint at the highest T p . The level of purity of alumina was not found to affect the overall interfacial microstructure, which is attributed to the formation of various solid solutions. It is suggested that Ti 3 Cu 3 O forms initially on the alumina. Diffusion of Ti occurs subsequently to form titanium oxide at the Ti 3 Cu 3 O/alumina interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.