Here we describe a new experiment to test the shielding concept of a dipolelike magnetic field and plasma, surrounding a spacecraft forming a 'mini magnetosphere'. Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the solar wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small 'hole' in a solar wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared with a 3D particle-incell 'hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers.
If mankind is to explore the solar system beyond the confines of our Earth and Moon the problem of radiation protection must be addressed. Galactic cosmic rays and highly variable energetic solar particles are an ever-present hazard in interplanetary space. Electric and/or magnetic fields have been suggested as deflection shields in the past, but these treated space as an empty vacuum. In fact it is not empty. Space contains a plasma known as the solar wind; a constant flow of protons and electrons coming from the Sun. In this paper we explore the effectiveness of a "mini-magnetosphere" acting as a radiation protection shield. We explicitly include the plasma physics necessary to account for the solar wind and its induced effects. We show that, by capturing/containing this plasma, we enhance the effectiveness of the shield. Further evidence to support our conclusions can be obtained from studying naturally occurring "mini-magnetospheres" on the Moon. These magnetic anomalies (related to "lunar swirls") exhibit many of the effects seen in laboratory experiments and computer simulations. If shown to be feasible, this technology could become the gateway to manned exploration of interplanetary space
Rocket-based combined-cycle engines are currently under consideration for use on future, reusable launch vehicles. By combining traditional rocket and airbreathing operating modes into a single engine, multi-mode RBCC engines offer a number of advantages for launch vehicle designers including higher trajectory averaged I sp than pure rockets and higher installed thrust-to-weight ratios than pure airbreathers.
Solar energetic ions are a known hazard to both spacecraft electronics and to manned space flights in interplanetary space missions that extend over a long period of time. A dipole-like magnetic field and a plasma source, forming a mini-magnetosphere, are being tested in the laboratory as means of protection against such hazards. We investigate, via particle-in-cell hybrid simulations, using kinetic ions and fluid electrons, the characteristics of the mini-magnetospheres. Our results, for parameters identical to the experimental conditions, reveal the formation of a mini-magnetosphere, whose features are scanned with respect to the plasma density, the plasma flow velocity and the intensity of the dipole field. Comparisons with a simplified theoretical model reveal a good qualitative agreement and excellent quantitative agreement for higher plasma dynamic pressures and lower B-fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.