Background The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. MethodsThe Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≥18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A posthoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). Findings We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5•9 months (IQR 4•9-6•5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40-59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity.Interpretation We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments w...
Research Impact-These data demonstrate that profiling the FeNO and blood eosinophil response to inhaled corticosteroids (ICS) in subjects with difficult-to-control severe asthma using remote monitoring technology is useful for clinical phenotyping. It differentiates subjects who will respond well with better adherence to high dose ICS/LABA therapy from those subjects who may require progression to additional treatment. This strategy will be of value in identifying ICS-responsive subjects prior to recruitment to clinical trials investigating interventions which are "add-on" treatments to standard care, and to mechanistic studies investigating "true" inhaled steroid-resistant asthma.
BackgroundUnplanned hospital admissions place a large and increasing strain on healthcare budgets worldwide. Many admissions for ambulatory care sensitive conditions (ACSCs) are thought to be preventable, a belief supported by significant geographic variations in admission rates. We conducted a systematic review of the evidence on the magnitude and correlates of geographic variation in ACSC admission rates and length of stay (LOS).MethodsWe performed a search of Medline and Embase databases for English language cross-sectional and cohort studies on 28th March 2013 reporting geographic variation in admission rates or LOS for patients receiving unplanned care across at least 10 geographical units for one of 35 previously defined ACSCs. Forward and backward citation searches were undertaken on all included studies. We provide a narrative synthesis of study findings. Study quality was assessed using a modified Newcastle-Ottawa scale.ResultsWe included 39 studies comprising 25 on admission rates and 14 on LOS. Studies generally compared admission rates between regions (e.g. states) and LOS between hospitals. Most of the published research was undertaken in the US, UK or Canada and often focussed on patients with pneumonia, COPD or heart failure. 35 (90 %) studies concluded that geographic variation was present. Primary care quality and secondary care access were frequently suggested as drivers of admission rate variation whilst secondary care quality and adherence to clinical guidelines were often listed as contributors to LOS variation. Several different methods were used to quantify variation, some studies listed raw data, failed to control for confounders and used naive statistical methods which limited their utility.ConclusionsThe substantial geographical variations in the admission rates and LOS of potentially avoidable conditions could be a symptom of variable quality of care and should be a concern for clinicians and policymakers. Policymakers targeting a reduction in unplanned admissions could introduce initiatives to improve primary care access and quality or develop alternatives to admission. Those attempting to curb unnecessarily long LOS could introduce care pathways or guidelines. Methodological work on the quantification and reporting of geographic variation is needed to aid inter-study comparisons.Electronic supplementary materialThe online version of this article (doi:10.1186/s12913-015-0964-3) contains supplementary material, which is available to authorized users.
ObjectivesOvercrowding in the emergency department (ED) is common in the UK as in other countries worldwide. Computer simulation is one approach used for understanding the causes of ED overcrowding and assessing the likely impact of changes to the delivery of emergency care. However, little is known about the usefulness of computer simulation for analysis of ED patient flow. We undertook a systematic review to investigate the different computer simulation methods and their contribution for analysis of patient flow within EDs in the UK.MethodsWe searched eight bibliographic databases (MEDLINE, EMBASE, COCHRANE, WEB OF SCIENCE, CINAHL, INSPEC, MATHSCINET and ACM DIGITAL LIBRARY) from date of inception until 31 March 2016. Studies were included if they used a computer simulation method to capture patient progression within the ED of an established UK National Health Service hospital. Studies were summarised in terms of simulation method, key assumptions, input and output data, conclusions drawn and implementation of results.ResultsTwenty-one studies met the inclusion criteria. Of these, 19 used discrete event simulation and 2 used system dynamics models. The purpose of many of these studies (n=16; 76%) centred on service redesign. Seven studies (33%) provided no details about the ED being investigated. Most studies (n=18; 86%) used specific hospital models of ED patient flow. Overall, the reporting of underlying modelling assumptions was poor. Nineteen studies (90%) considered patient waiting or throughput times as the key outcome measure. Twelve studies (57%) reported some involvement of stakeholders in the simulation study. However, only three studies (14%) reported on the implementation of changes supported by the simulation.ConclusionsWe found that computer simulation can provide a means to pretest changes to ED care delivery before implementation in a safe and efficient manner. However, the evidence base is small and poorly developed. There are some methodological, data, stakeholder, implementation and reporting issues, which must be addressed by future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.