Objective
To image subretinal neovascularization in proliferative macular telangiectasia type 2 (MacTel2) using swept source optical coherence tomography based microangiography (OMAG).
Study Design
Patients with MacTel2 were enrolled in a prospective, observational study known as the MacTel Project and evaluated using a high-speed 1050nm swept-source OCT (SS-OCT) prototype system. The OMAG algorithm generated en face flow images from three retinal layers, as well as the region bounded by the outer retina and Bruch’s membrane, the choriocapillaris, and the remaining choroidal vasculature. The en face OMAG images were compared to images from fluorescein angiography (FA) and indocyanine green angiography (ICGA).
Results
Three eyes with neovascular MacTel2 were imaged. The neovascularization was best identified from the en face OMAG images that included a layer between the outer retinal boundary and Bruch’s membrane. OMAG images identified these abnormal vessels better than FA and were comparable to the images obtained using ICGA. In all three cases, OMAG identified choroidal vessels communicating with the neovascularization, and these choroidal vessels were evident in the two cases with ICGA imaging. In one case, monthly injections of bevacizumab reduced the microvascular complexity of the neovascularization, as well as the telangiectatic changes within the retinal microvasculature. In another case, less frequent bevacizumab therapy was associated with growth of the subretinal neovascular complex.
Conclusions
OMAG imaging provided detailed, depth-resolved information about subretinal neovascularization in MacTel2 eyes demonstrating superiority to FA imaging and similarities to ICGA imaging for documenting the retinal microvascular changes, the size and extent of the neovascular complex, the communications between the neovascular complex and the choroidal circulation, and the response to monthly bevacizumab therapy.
Contact lens-associated Acanthamoeba keratitis continues to be a significant cause of visual morbidity in the United States. Although exposure to water sources while wearing lenses has been a known risk factor for infection for decades, this behavior in several contact lens hygiene protocols continues to prevail. In this review, we surveyed the currently available contact lens cleaning solutions for both soft and rigid gas-permeable contact lenses and reviewed the cleaning instructions of the available solutions. Discrepancies between clinician recommendations and written instructions on a solution packages continues to persist, and we advocate a revision in current manufacturer guidelines to include explicit warnings against use of tap or distilled water sources for cleaning contact lenses or their storage cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.