We present a novel method to detect variable astrophysical objects and transient phenomena using anomalous excess scatter in repeated measurements from public catalogs of Gaia DR2 and Zwicky Transient Facility (ZTF) DR3 photometry. We first provide a generalized, all-sky proxy for variability using only Gaia DR2 photometry, calibrated to white dwarf stars. To ensure more robust candidate detection, we further employ a method combining Gaia with ZTF photometry and alerts. To demonstrate its efficacy, we apply this latter technique to a sample of roughly 12,100 white dwarfs within 200 pc centered on the ZZ Ceti instability strip, where hydrogen-atmosphere white dwarfs are known to pulsate. By inspecting the top 1% of the samples ranked by these methods, we demonstrate that both the Gaia-only and ZTF-informed techniques are highly effective at identifying known and new variable white dwarfs, which we verify using follow-up, high-speed photometry. We confirm variability in all 33 out of 33 (100%) observed white dwarfs within our top 1% highest-ranked candidates, both inside and outside the ZZ Ceti instability strip. In addition to dozens of new pulsating white dwarfs, we also identify five white dwarfs highly likely to show transiting planetary debris; if confirmed, these systems would more than triple the number of white dwarfs known to host transiting debris.
This study compares observed polar motion for the period 1900–1985 with meteorologic and hydrologic data for the world over the same period, in an effort to determine whether water storage, in combination with air mass redistribution, can account for the observed variance of polar motion. Monthly time series of estimated continental water storage and air mass excitation functions have been compared at the annual frequency and at the Chandler frequency using power, coherence, multiple coherence, and phase spectra. There is a discrepancy in accounting for more than half the variance of polar motion across a broad range of frequencies. Similar results have been obtained in recent studies of polar motion at frequencies above 1 cycle per year using modern space geodetic determinations of polar motion. The persistence of the discrepancy at the annual frequency and its broadband nature suggest a source of polar motion excitation due to air and water motion which has either not been correctly estimated or not yet identified.
We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 ± 1.4) × 10 −15 s s −1 employing the O − C method and (5.45 ± 0.79) × 10 −15 s s −1 using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 ± 1.0) × 10 −15 s s −1. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 ± 1.1) × 10 −15 s s −1. This value is consistent within uncertainties with the measurement of (4.19 ± 0.73) × 10 −15 s s −1 for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.
Analysis of nonseasonal polar motion excitation and atmospheric mass equatorial angular momentum (EAM) over land for the period 1980-1989 reveals a clear pattern of high power and correlation during the northern hemisphere (NH) winter followed by low power and correlation during the NH summer. A special case of this pattern occurs for longer than 14 months (from January 1987 to March 1988) when the correlation throughout the NH summer remains statistically significant. During this epoch an average of 72% of the nonseasonal polar motion excitation power at frequencies between -30 and +12 cycles/yr is linearly related to atmospheric EAM over land. During the southern hemisphere winter there is significant correlation between the atmospheric EAM over midlatitude southern oceans and polar motion excitation indicating the existence of a dynamic atmosphereocean excitation. The atmospheric excitation power is too small to explain the large correlation during the NH winter. The effects of winds probably account for the deficit in power. The implication of these results is that there are two main excitation sources each dominant at different seasons. Atmospheric mass redistribution over land forces polar motion during the NH winter, and a dynamic atmosphere-ocean response is important during the SH winter.
A novel replacement gate design with 1.5-3 nm oxide or remote plasma nitrided oxide gate insulators for sub-lOOnm Al/TiN or W/TiN metal gate nMOSFETs is demonstrated. The source/drain regions are self-aligned to a poly gate which is later replaced by the metal gate. This allows the temperatures after metal gate definition to be limited to 450 OC. Compared to pure SOz, the nitrided oxides provide increased capacitance with less penalty in increased gate current. A saturation transconductance (g,) of 1000 mS/mm is obtained for L,,,=70 nm and tox=1.5 nm. Peak cutoff frequency (fT) of 120 GHz and a low minimum noise figure (NF~") of 0.5 dB with associated gain of 19 dB are obtained for tox = 2 nm and L,,,=80 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.