Bacterial pathogens, such as Pseudomonas aeruginosa, readily form biofilms on surfaces, limiting the efficacy of antimicrobial and antibiotic treatments. To mitigate biofilm formation, surfaces are often treated with antimicrobial agents, which have limited lifetime and efficacy. Recent studies have shown that well-ordered topographic patterns can limit bacterial attachment to surfaces and limit biofilm formation. In this study, nano and microscale patterned poly(dimethylsiloxane) surfaces were evaluated for their ability to affect adhesion and biofilm formation by Pseudomonas aeruginosa. Feature size and spacing were varied from 500 nm to 2 μm and included repeating arrays of square pillars, holes, lines and biomimetc Sharklet™ patterns. Bacterial surface adhesion and biofilm formation was assessed in microfluidic flow devices and under static conditions. Attachment profiles under static and fluid flow varied within topography types, sizes and spacing. Pillar structures of all sizes yielded lower surface attachment than line-based patterns and arrays of holes. This trend was also observed for biomimetic Sharklet™ patterns, with reduced bacterial attachment to "raised" features as compared to "recessed" features. Notably, none of the topographically patterned surfaces outperformed smooth surfaces (without topography) for resisting cell adhesion. Initial surface attachment patterns were indicative of subsequent biofilm formation and coverage, suggesting a direct role of surface topography in biofilm-based biofouling.
Nanotechnology applications in medicine are poised to revolutionize the prevention, diagnosis, and treatment of disease. Researchers, scientists, and physicians across various disciplines and specialties are working to develop innovative clinical tools that incorporate materials, devices, and systems engineered at the nanoscale. Surgical specialties, such as orthopedic surgery, are among those developing nanotechnology applications for clinical use. Orthopedic surgery addresses disorders of the musculoskeletal system including repair by both surgical and nonsurgical means of tendons, ligaments, muscles, bones, and nerves injured due to trauma or disease. Medical interventions targeting orthopedic conditions are becoming increasingly important given current epidemiologic trends in these conditions. The purpose of this article is to highlight current and emerging applications of nanotechnology in orthopedic surgery. Selected, clinically relevant examples are described in the categories of drugs and drug delivery, imaging, sensors, biomaterials, diagnostics, and novel therapeutics. Several promising nanomedicine applications that target orthopedic conditions are in various stages of development from basic scientific research to clinical trials to product development and commercialization. Nanotechnology applications aimed at the prevention, diagnosis, and treatment of orthopedic conditions hold great promise for improving the standard of care in orthopedic surgery in the 21st century.
In this cohort of patients with OAG, changes in retinal capillary blood flow correlated more strongly with changes in ONH morphology in patients with DM than in those without DM. These data suggest that changes in retinal blood flow may play a larger role in glaucomatous ONH progression in patients with OAG with DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.