Fabrication techniques usually applied to microelectromechanical systems (MEMS) are used to reduce the size and operating power of the core physics assembly of an atomic clock. With a volume of 9.5 mm 3 , a fractional frequency instability of 2.5ϫ 10 −10 at 1 s of integration, and dissipating less than 75 mW of power, the device has the potential to bring atomically precise timing to hand-held, battery-operated devices. In addition, the design and fabrication process allows for wafer-level assembly of the structures, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.
Using the techniques of microelectromechanical systems, we have constructed a small low-power magnetic sensor based on alkali atoms. We use a coherent population trapping resonance to probe the interaction of the atoms’ magnetic moment with a magnetic field, and we detect changes in the magnetic flux density with a sensitivity of 50pTHz−1∕2 at 10Hz. The magnetic sensor has a size of 12mm3 and dissipates 195mW of power. Further improvements in size, power dissipation, and magnetic field sensitivity are immediately foreseeable, and such a device could provide a hand-held battery-operated magnetometer with an atom shot-noise limited sensitivity of 0.05pTHz−1∕2.
We describe the fabrication of chip-sized alkali atom vapor cells using silicon micromachining and anodic bonding technology. Such cells may find use in highly miniaturized atomic frequency references or magnetometers. The cells consist of cavities etched in silicon, with internal volumes as small as 1 mm3. Two techniques for introducing cesium and a buffer gas into the cells are described: one based on chemical reaction between cesium chloride and barium azide, and the other based on direct injection of elemental cesium within a controlled anaerobic environment. Cesium optical absorption and coherent population trapping resonances were measured in the cells.
An Nb-Sn filament mounted on a flexible glass beam can be broken to form an electron tunneling junction between the fracture elements. Breaking the filament in liquid helium prevents oxidation of the freshly exposed fracture surfaces. A sharp superconducting energy gap in the I-V characteristics measured at 4 K indicates the formation of a high-quality tunneling barrier between the fracture elements. The resistance of the junction can be continuously adjusted by varying the surface bending strain of the beam. An estimated 0.1 nm change in the barrier thickness produces about an order of magnitude change in the resistance over the range from 105 to 108 Ω. The exponential character of this dependence shows that the tunnel junction is freely adjustable without intimate contact of the junction elements. ‘‘Break’’ junctions made in this way offer a new class of tunneling experiments on freshly exposed surfaces of a fractured sample without the oxide barrier previously required for junction stability. Such experiments provide a simple technique for tunneling to new materials and may eliminate complications that can be encountered during interpretation of data obtained using oxide barriers.
We demonstrate a microfabricated atomic clock physics package based on coherent population trapping (CPT) on the D1 line of 87Rb atoms. The package occupies a volume of 12 mm3 and requires 195 mW of power to operate at an ambient temperature of 200 degrees C. Compared to a previous microfabricated clock exciting the D2 transition in Cs [1], this 87Rb clock shows significantly improved short- and long-term stability. The instability at short times is 4 x?10-11 / tau?/2 and the improvement over the Cs device is due mainly to an increase in resonance amplitude. At longer times (tau?> 50 s), the improvement results from the reduction of a slow drift to ?5 x 10-9 / day. The drift is most likely caused by a chemical reaction of nitrogen and barium inside the cell. When probing the atoms on the D1 line, spin-exchange collisions between Rb atoms and optical pumping appear to have increased importance compared to the D2 line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.