Background and Purpose-Anecdotal reports suggest that a loss of distinction between gray (GM) and white matter (WM) as adjudged by CT scan predicts poor outcome in comatose patients after cardiac arrest. To address this, we quantitatively assessed GM and WM intensities at various brain levels in comatose patients after cardiac arrest. Methods-Patients for whom consultation was requested within 24 hours of a cardiac arrest were identified with the use of a computerized database that tracks neurological consultations at our institution. Twenty-five comatose patients were identified for whom complete medical records and CT scans were available for review. Twenty-five consecutive patients for whom a CT scan was interpreted as normal served as controls. Hounsfield units (HUs) were measured in small defined areas obtained from axial images at the levels of the basal ganglia, centrum semiovale, and high convexity area. Results-At each level tested, lower GM intensity and higher WM intensity were noted in comatose patients compared with normal controls. The GM/WM ratio was significantly lower among comatose patients compared with controls (PϽ0.0001, rank sum test). There was essentially no overlap in GM/WM ratios between control and study patients. The difference was greatest at the basal ganglia level. We also observed a marginally significant difference in the GM/WM ratio at the basal ganglia level between those patients who died and those who survived cardiac arrest (Pϭ0.035, 1-tailed t test). Using receiver operating characteristic curve analysis, we determined that a difference in GM/WM ratio of Ͻ1.18 at the basal ganglia level was 100% predictive of death. At the basal ganglia level, none of 12 patients below this threshold survived, whereas the survival rate was 46% among patients in whom the ratio was Ͼ1.18. The empirical risk of death was 21.67 for comatose patients with a value below threshold. Conclusions-The ratio in HUs of GM to WM provides a reproducible measure of the distinction between gray and white matter. A lower GM/WM ratio is observed in comatose patients immediately after cardiac arrest. The basal ganglia level seems to be the most sensitive location on CT for measuring this relationship. Although a GM/WM ratio Ͻ1.18 at this level predicted death in this retrospective study, the difference in this study is not robust enough to recommend that management decisions be dictated by CT results. The results, however, do warrant consideration of a prospective study to determine the reliability of CT scanning in predicting outcome for comatose patients after cardiac arrest. (Stroke.
We present three cases of desmoplastic infantile ganglioglioma in patients admitted to our institution in the past 8 years. CT and MR findings are discussed. Typically, these lesions are located in the frontal and parietal lobes, appearing as cystic tumors with a solid cortical component within the cerebrum, which enhances intensely, and moderate surrounding edema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.