An extensive suite of igneous sills, collectively known as the Faroe-Shetland Sill Complex, has been intruded into the Cretaceous and Tertiary sedimentary section of the Faroe-Shetland Channel area. These sills have been imaged offshore by three-dimensional (3D) reflection seismic surveys and penetrated by several exploration boreholes. Data from wireline log measurements in these boreholes allow us to characterize the physical properties of the sills and their thermal aureoles. The borehole data has been compiled to produce new empirical relationships between sonic velocity and density, and between compressional and shear sonic velocities within the sills. These relationships are used to assist in calculation of synthetic seismic traces for sills intruded into sedimentary section, in order to calibrate the seismic response of the sills as observed in field data. This paper describes how the seismic amplitude response of the sills can be used to predict sill thickness where there is some nearby well control, and use this technique to estimate the volume of one well-imaged sill penetrated by Well 205/10-2b. Since the sills have a high impedance contrast with their host rocks, they return strong seismic reflections. 3D seismic survey data allow mapping of the morphology of the sills with a high level of confidence, although in some instances disruption of the downgoing seismic wavefield causes the seismic imaging of deeper sills and other structures to be very poor. Examples of sub-circular and dish-shapes sills, and also semi-conical and sheet-like intrusions, which are highly discordant are shown. The introduction of intrusive rocks can play an important role in the subsequent development of the sedimentary system. An example is shown in which differential compaction or soft sediment deformation around and above the sills appears to have controlled deposition of a reservoir quality sand body. The positioning of the sills within sedimentary basins is discussed, by constructing a simple model in which pressure support of magma from a crustal magma chamber provides the hydrostatic head of magma required for intrusion at shallow levels. This model is made semi-quantitative using a simple equation relating rock densities to intrusion depth, calibrated to observations from the Faroe-Shetland area. The model predicts that sills can be intruded at shallower levels in the sedimentary section above basement highs, which agrees with observations detailed in this paper.
Decompression melting of hot mantle rising in the convectively driven core of the Iceland plume generates igneous crust beneath Iceland that is c. 25 km thick. Passive decompression of mantle beneath the adjacent Reykjanes Ridge spreading centre produces crust 7–10 km thick. The decrease between Iceland and the adjacent oceanic spreading centre in crustal thickness, in basement elevation and in melting column thickness deduced from rare earth element inversions of basaltic igneous rocks, suggests that the mantle beneath the spreading centre is markedly cooler (potential temperature less than 1400°C) than in the core of the plume under Iceland (potential temperature c. 1500 °C). We suggest that the spreading centre is fed by mantle from a cooler sheath surrounding the narrow central core of the plume under Iceland, and that the mantle cools to the south until it reaches a normal potential temperature of 1300°C about 1350 km away from the centre of the plume. Prominent V-shaped topography and gravity anomalies on the Reykjanes Ridge record variations of up to 30°C in the temperature of the underlying asthenospheric mantle supplied by the plume, over timescales of 5–10 Ma.
Development of the rifted continental margins and subsequent seafloor spreading in the North Atlantic was dominated by interaction between the Iceland mantle plume and the continental and oceanic rifts. There is evidence that at the time of breakup a thin sheet of particularly hot asthenospheric mantle propagated beneath the lithosphere across a 2500 km diameter region. This event caused transient uplift, massive volcanism and intrusive magmatism, and a rapid transition from continental stretching to seafloor spreading. Subsequently, the initial plume instability developed to an axisymmetric shape, with the c. 100 km diameter central core of the Iceland plume generating 30-40 km thick crust along the Greenland-Iceland-Faroes Ridge. The surrounding 2000 km diameter region received the lateral outflow from the plume, causing regional elevation and the generation of thicker and shallower than normal oceanic crust. We document both long-term (10-20Ma) and short-term (3-5Ma) fluctuations in the temperature and/or flow rate of the mantle plume by their prominent effects on the oceanic crust formed south of Iceland. Lateral ridge jumps in the locus of rifting are frequent above the regions of hottest asthenospheric mantle, occurring in both the early history of seafloor spreading, when the mantle was particularly hot, and throughout the generation of the Greenland-lceland-Faroes Ridge.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.