In the present work, the contemporary exhaust gas treatment systems (EGTS) used for SOx, PM, and NOx emission mitigation from shipping are reviewed. Specifically, after-treatment technologies such as wet scrubbers with seawater and freshwater solution with NaOH, hybrid wet scrubbers, wet scrubbers integrated in exhaust gas recirculation (EGR) installations, dry scrubbers, inert gas wet scrubbers and selective catalytic reduction (SCR) systems are analyzed. The operational principles and the construction specifications, the performance characteristics and the investment and operation of the reviewed shipping EGTS are thoroughly elaborated. The SCR technology is comparatively evaluated with alternative techniques such as LNG, internal engine modifications (IEM), direct water injection (DWI) and humid air motor (HAM) to assess the individual NOx emission reduction potential of each technology. Detailed real data for the time several cargo vessels spent in shipyards for seawater scrubber installation, and actual data for the purchase cost and the installation cost of seawater scrubbers in shipyards are demonstrated. From the examination of the constructional, operational, environmental and economic parameters of the examined EGTS, it can be concluded that the most effective SOx emission abatement system is the closed-loop wet scrubbers with NaOH solution which can practically eliminate ship SOx emissions, whereas the most effective NOx emission mitigation system is the SCR which cannot only offer compliance of a vessel with the IMO Tier III limits but can also practically eliminate ship NOx emissions.
The present study describes a model-based approach for the assessment of central cooling retrofit solutions using variable speed drive (VSD) seawater (SW) pumps in marine applications. There are two main innovative features of the proposed methodology. The effect of boundary conditions (fluid stream temperatures and mass flow rates) on the performance of central SW/fresh water (FW) cooler is considered via a detailed heat exchanger simulation model. Additionally, the repercussion of the higher FW temperature on the main engine fuel consumption due to the incorporation of a VSD SW pump is examined. The proposed methodology is applied on a handy-size bulk carrier equipped with a shell and tube SW/FW central cooler and a two-stroke main diesel engine. Both the reduced power demand for the VSD pump and the increased brake specific fuel consumption (bsfc) of the main engine due to the increased low temperature (LT)/FW temperature have been considered at each operating point examined. Predictions have shown that in all part-load operating cases examined the use of a VSD SW pump has a positive effect on the reduction of total fuel consumption, whereas at full engine load, there is a SW threshold temperature under which the operation with a VSD pump leads to slightly higher total fuel consumption. This study highlights the importance of using an integrated approach for the reliable assessment of central cooling retrofit solutions, which can lead to optimized control solutions of the VSD pump operation for maximizing a ship’s fuel savings.
In the present study, energy and exergy analyses of a simple supercritical, a split supercritical and a cascade supercritical CO2 cycle are conducted. The bottoming cycles are coupled with the main two-stroke diesel engine of a 6800 TEU container ship. An economic analysis is carried out to calculate the total capital cost of these installations. The functional parameters of these cycles are optimized to minimize the electricity production cost (EPC) using a genetic algorithm. Exergo-economic and exergo-environmental analyses are conducted to calculate the cost of the exergetic streams and various exergo-environmental parameters. A parametric analysis is performed for the optimum bottoming cycle to investigate the impact of ambient conditions on the energetic, exergetic, exergo-economic and exergo-environmental key performance indicators. The theoretical results of the integrated analysis showed that the installation and operation of a waste heat recovery optimized split supercritical CO2 cycle in a 6800 TEU container ship can generate almost 2 MW of additional electric power with a thermal efficiency of 14%, leading to high fuel and CO2 emission savings from auxiliary diesel generators and contributing to economically viable shipping decarbonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.