The duck pineal gland rhythmically produces two 5-methoxyindole compounds, i.e. 5-methoxytryptophol and melatonin. 5-Methoxytryptophol levels are low at night and high during the day, while melatonin concentrations are high at night and low during the day. The melatonin rhythm reflects oscillations in the activity of serotonin N-acetyltransferase (AA-NAT; a penultimate and key regulatory enzyme in the melatonin biosynthetic pathway). The activity of hydroxyindole-O-methyltransferase (HIOMT; an enzyme involved in the synthesis of both 5-methoxytryptophol and melatonin) does not exhibit any significant rhythmic changes throughout the 24-hr period. Plasma levels of melatonin exhibited daily changes that were parallel to fluctuations in pineal melatonin content. Although plasma concentrations of 5-methoxytryptophol were low in ducks, they showed daily variations. The mean 5-methoxytryptophol concentration between zeitgeber time 9 (ZT9) and ZT15 was 2.4-times higher than the mean value for samples collected between ZT18 and ZT3. These findings indicate that in the duck the pineal production of 5-methoxytryptophol and melatonin may be inversely correlated.
In this study the role of retinal dopamine (DA) receptors in the light-induced suppression of melatonin biosynthesis in the chicken pineal gland was examined. Exposure of dark-adapted chickens to low intensity light (4 lux) at night significantly decreased the activity of serotonin N-acetyltransferase (AA-NAT; the penultimate and key regulatory enzyme in melatonin production) and melatonin content in the pineal gland. This suppressive action of light was blocked by intraocular (i.oc.) administration of SCH 23390 (a selective antagonist of D1-DA receptors), but was not affected by sulpiride (a selective antagonist of D2-DA receptors). Injection of DA (i.oc.) to dark-adapted chickens significantly decreased pineal AA-NAT activity and melatonin content in a dose- and time-dependent manner. The action of DA was mimicked by selective agonists of D1-DA receptors, SKF 38393 and SKF 81297, and non-hydrolyzable analogs of cyclic AMP (cAMP), dibutyryl-cAMP and 8-bromo-cAMP. However, i.oc. administration of quinpirole, a selective agonist of D2-DA receptors, did not modify pineal AA-NAT activity. In contrast, quinpirole potently decreased nocturnal AA-NAT activity in the retina. Systemic administration of SCH 23390 to chickens blocked the i.oc. DA-evoked decline in nighttime pineal AA-NAT activity, whereas sulpiride was ineffective. These findings indicate that light activation of retinal dopaminergic neurotransmission, with concomitant stimulation of D1-DA receptors positively coupled to the cAMP generating system, plays an important role in a cascade of events regulating pineal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.