Supplementary data are available at Bioinformatics online.
Mismatch repair (MMR) analysis in breast cancer may help to inform immunotherapy decisions but it lacks breast-specific guidelines. Unlike in other neoplasms, MMR protein loss shows intra-tumor heterogeneity and it is not mirrored by microsatellite instability in the breast. Additional biomarkers can improve MMR clinical testing. Phosphatase and tensin homolog (PTEN) inactivation is an early oncogenic event that is associated with MMR deficiency (dMMR) in several tumors. Here, we sought to characterize the diagnostic utility of PTEN expression analysis for MMR status assessment in breast cancer. A total of 608 breast cancers were profiled for their MMR and PTEN status. Proteins expression and distribution were analyzed by immunohistochemistry (IHC) on tissue microarrays and confirmed on full sections; PTEN copy number alterations were detected using a real-time PCR assay. Overall, 78 (12.8%) cases were MMR-heterogeneous (hMMR), while all patterns of PTEN expression showed no intra-tumor heterogeneity. Wild-type PTEN expression was observed in 15 (18.5%) dMMR tumors (p < 0.0001). Survival analyses revealed significant correlations between MMR-proficient (pMMR), PTEN expression, and a better outcome. The positive predictive value of PTEN-retained status for pMMR ranged from 94.6% in estrogen receptor (ER)+/HER2- tumors to 100% in HER2-amplified and ER-/HER2- cases. We propose a novel diagnostic algorithm where PTEN expression analysis can be employed to identify pMMR breast cancers.
BackgroundThe increasing availability of resequencing data has led to a better understanding of the most important genes in cancer development. Nevertheless, the mutational landscape of many tumor types is heterogeneous and encompasses a long tail of potential driver genes that are systematically excluded by currently available methods due to the low frequency of their mutations. We developed LowMACA (Low frequency Mutations Analysis via Consensus Alignment), a method that combines the mutations of various proteins sharing the same functional domains to identify conserved residues that harbor clustered mutations in multiple sequence alignments. LowMACA is designed to visualize and statistically assess potential driver genes through the identification of their mutational hotspots.ResultsWe analyzed the Ras superfamily exploiting the known driver mutations of the trio K-N-HRAS, identifying new putative driver mutations and genes belonging to less known members of the Rho, Rab and Rheb subfamilies. Furthermore, we applied the same concept to a list of known and candidate driver genes, and observed that low confidence genes show similar patterns of mutation compared to high confidence genes of the same protein family.ConclusionsLowMACA is a software for the identification of gain-of-function mutations in putative oncogenic families, increasing the amount of information on functional domains and their possible role in cancer. In this context LowMACA emphasizes the role of genes mutated at low frequency otherwise undetectable by classical single gene analysis.LowMACA is an R package available at http://www.bioconductor.org/packages/release/bioc/html/LowMACA.html. It is also available as a GUI standalone downloadable at: https://cgsb.genomics.iit.it/wiki/projects/LowMACAElectronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-0935-7) contains supplementary material, which is available to authorized users.
Glioblastoma (GBM) is the most malignant human brain tumour, characterized by rapid progression, invasion, intense angiogenesis, high genomic instability, and resistance to therapies. Despite countless experimental researches for new therapeutic strategies and promising clinical trials, the prognosis remains extremely poor, with a mean survival of less than 14 months. GBM aggressive behaviour is due to a subpopulation of tumourigenic stem-like cells, GBM stem cells (GSCs), which hierarchically drive onset, proliferation, and tumour recurrence. The morbidity and mortality of this disease strongly encourage exploring genetic characteristics of GSCs. Here, using array-CGH platform, we investigated genetic and genomic aberration profiles of GBM parent tumour (n=10) and their primarily derived GSCs. Statistical analysis was performed by using R software and complex heatmap and corrplot packages. Pearson correlation and K-means algorithm were exploited to compare genetic alterations and to group similar genetic profiles in matched pairs of GBM and derived GSCs. We identified, in both GBM and matched GSCs, recurrent copy number alterations, as chromosome 7 polysomy, chromosome 10 monosomy, and chromosome 9p21deletions, which are typical features of primary GBM, essential for gliomagenesis. These observations suggest a condition of strong genomic instability both in GBM as GSCs. Our findings showed the robust similarity between GBM mass and GSCs (Pearson corr.≥0.65) but also highlighted a marked variability among different patients. Indeed, the heatmap reporting Gain/Loss State for 21022 coding/noncoding genes demonstrated high interpatient divergence. Furthermore, K-means algorithm identified an impairment of pathways related to the development and progression of cancer, such as angiogenesis, as well as pathways related to the immune system regulation, such as T cell activation. Our data confirmed the preservation of the genomic landscape from tumour tissue to GSCs, supporting the relevance of this cellular model to test in vitro new target therapies for GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.