Summary The emergence of the novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19) 1 . The development of a vaccine is likely to require at least 12-18 months, and the typical timeline for approval of a novel antiviral therapeutic can exceed 10 years. Thus, repurposing of known drugs could significantly accelerate the deployment of novel therapies for COVID-19. Towards this end, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. We report the identification of 100 molecules that inhibit viral replication, including 21 known drugs that exhibit dose response relationships. Of these, thirteen were found to harbor effective concentrations likely commensurate with achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod 2 – 4 , and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334. Notably, MDL-28170, ONO 5334, and apilimod were found to antagonize viral replication in human iPSC-derived pneumocyte-like cells, and the PIKfyve inhibitor also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, the known pharmacological and human safety profiles of these compounds will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.
Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alphasynuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways.Cells live in a dynamic environment in which they confront various perturbations such as sudden environmental changes, toxins, and mutations. The response to such perturbations is #To whom correspondence should be addressed. E-mail: lindquist_admin@wi.mit.edu (S. L.); fraenkel-admin@mit.edu (E.F.). 7 Present Address: Department of Cell and Developmental Biology, The University of Pennsylvania, Philadelphia, PA, USA 8 Present Address: Medical College of Georgia, Augusta, GA, USA 9 Present Address: Boston Biomedical Research Institute, Watertown, MA, USA. * These authors contributed equally to this work + These authors contributed equally to this work Summary: A novel approach that integrates genetic hits, differentially expressed genes and known molecular interactions reveals a dramatically enhanced view of cellular responses and was used to create the first cellular map of alpha-synuclein toxicity. NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2009 September 1. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript typically complex and comprises signaling and metabolic changes, as well as changes in gene expression. Revealing the cellular mechanisms responding to a specific perturbation may unravel its nature, thus illuminating disease mechanisms 1 or a drug's mode of action 2 ,3 , and identify points of intervention with potential therapeutic value 4 .High-throughput experimental techniques including mRNA profiling and genetic screening are commonly used for revealing components of these response pathways because they provide a genome-and proteome-wide view of molecular changes. mRNA profiling experiments rapidly identify genes that are differentially expressed following stimuli. Genetic screening...
Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo.
Highlights d SARS-CoV-2 replication induces a delayed IFN response in lung epithelial cells d MDA5 and LGP2 are the major sensors recognizing SARS-CoV-2 infection d Viral intermediates activate the IFN response through MDA5mediated sensing d IRF3, IRF5, and NF-kB/p65 are required for the IFN response induced by SARS-CoV-2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.