␣-Synuclein (␣-syn), a protein of unknown function, is the most abundant protein in Lewy bodies, the histological hallmark of Parkinson's disease (PD). In yeast ␣-syn inhibits endoplasmic reticulum (ER)-to-Golgi (ER3 Golgi) vesicle trafficking, which is rescued by overexpression of a Rab GTPase that regulates ER3 Golgi trafficking. The homologous Rab1 rescues ␣-syn toxicity in dopaminergic neuronal models of PD. Here we investigate this conserved feature of ␣-syn pathobiology. In a cell-free system with purified transport factors ␣-syn inhibited ER3 Golgi trafficking in an ␣-syn dose-dependent manner. Vesicles budded efficiently from the ER, but their docking or fusion to Golgi membranes was inhibited. Thus, the in vivo trafficking problem is due to a direct effect of ␣-syn on the transport machinery. By ultrastructural analysis the earliest in vivo defect was an accumulation of morphologically undocked vesicles, starting near the plasma membrane and growing into massive intracellular vesicular clusters in a dose-dependent manner. By immunofluorescence/immunoelectron microscopy, these clusters were associated both with ␣-syn and with diverse vesicle markers, suggesting that ␣-syn can impair multiple trafficking steps. Other Rabs did not ameliorate ␣-syn toxicity in yeast, but RAB3A, which is highly expressed in neurons and localized to presynaptic termini, and RAB8A, which is localized to post-Golgi vesicles, suppressed toxicity in neuronal models of PD. Thus, ␣-syn causes general defects in vesicle trafficking, to which dopaminergic neurons are especially sensitive. endoplasmic reticulum ͉ Rab GTPase ͉ yeasts ͉ vesicle trafficking ͉ Golgi
Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alphasynuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways.Cells live in a dynamic environment in which they confront various perturbations such as sudden environmental changes, toxins, and mutations. The response to such perturbations is #To whom correspondence should be addressed. E-mail: lindquist_admin@wi.mit.edu (S. L.); fraenkel-admin@mit.edu (E.F.). 7 Present Address: Department of Cell and Developmental Biology, The University of Pennsylvania, Philadelphia, PA, USA 8 Present Address: Medical College of Georgia, Augusta, GA, USA 9 Present Address: Boston Biomedical Research Institute, Watertown, MA, USA. * These authors contributed equally to this work + These authors contributed equally to this work Summary: A novel approach that integrates genetic hits, differentially expressed genes and known molecular interactions reveals a dramatically enhanced view of cellular responses and was used to create the first cellular map of alpha-synuclein toxicity. NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2009 September 1. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript typically complex and comprises signaling and metabolic changes, as well as changes in gene expression. Revealing the cellular mechanisms responding to a specific perturbation may unravel its nature, thus illuminating disease mechanisms 1 or a drug's mode of action 2 ,3 , and identify points of intervention with potential therapeutic value 4 .High-throughput experimental techniques including mRNA profiling and genetic screening are commonly used for revealing components of these response pathways because they provide a genome-and proteome-wide view of molecular changes. mRNA profiling experiments rapidly identify genes that are differentially expressed following stimuli. Genetic screening...
SUMMARY α-Synuclein (α-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because α-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson’s disease (PD). We previously created a yeast model of α-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to α-syn expression. We also uncovered a core group of proteins with diverse activities related to α-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of α-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress α-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of α-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced α-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of α-syn foci, re-established ER-to-Golgi trafficking and ameliorated α-syn-mediated damage to mitochondria. They also corrected the toxicity of α-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of α-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.