Grover's quantum search algorithm can be formulated as a quantum particle randomly walking on the (highly symmetric) complete graph, with one vertex marked by a nonzero potential. From an initial equal superposition, the state evolves in a two-dimensional subspace. Strongly regular graphs have a local symmetry that ensures that the state evolves in a three-dimensional subspace, but most have no global symmetry. Using degenerate perturbation theory, we show that quantum random walk search on known families of strongly regular graphs nevertheless achieves the full quantum speedup of Θ( √ N ), disproving the intuition that fast quantum search requires global symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.