The efficient interconversion of electrical and chemical energy requires the intimate coupling of electrons and small-molecule substrates at catalyst active sites. In molecular electrocatalysis, the molecule acts as a redox mediator which typically undergoes oxidation or reduction in a separate step from substrate activation. These mediated pathways introduce a high-energy intermediate, cap the driving force for substrate activation at the reduction potential of the molecule, and impede access to high rates at low overpotentials. Here we show that electronically coupling a molecular hydrogen evolution catalyst to a graphitic electrode eliminates stepwise pathways and forces concerted electron transfer and proton binding. Electrochemical and X-ray absorption spectroscopy data establish that hydrogen evolution catalysis at the graphite-conjugated Rh molecule proceeds without first reducing the metal center. These results have broad implications for the molecular-level design of energy conversion catalysts.
The development of new chemiresistive materials for use in chemical sensors that operate near ambient conditions could potentially reduce the costs of implementation, encouraging their use in new areas. Conductive metal−organic frameworks represent one intriguing class of materials for further investigation in this area, given their vast structural diversity and the specificity of adsorbate interactions afforded by their crystallinity. Here, we re-examine the electronic conductivity of the desolvated and acetonitrile-solvated microporous framework Cu[Ni(pdt) 2 ] (pdt 2− = 2,3-pyrazinedithiolate), and find that the conductivity in the pristine material is 200-fold greater than in the solvated state, highlighting the sensitivity of sample conductivity to guest inclusion. Additionally, the desolvated material is demonstrated to selectively adsorb the gaseous hydrocarbons ethane, ethylene, acetylene, propane, propylene, and cis-2-butene at ambient temperature. Investigation of the effect of gas adsorption on conductivity using an in situ measurement cell reveals a chemiresistive response for each adsorbate, and the change in conductivity with adsorbate pressure closely follows an empirical model identical in form to the Langmuir− Freundlich equation. The relative sensitivity of the framework to each adsorbate is, surprisingly, not correlated with binding strength. Instead, the differences in chemiresistive response between adsorbates are found to correlate strongly with gas phase specific heat capacity of the adsorbate. Nanoconfinement effects, manifesting as a relative deviation from the expected chemiresistive response, may influence charge transport in the case of the largest adsorbate considered, cis-2-butene. Timeresolved conductance and adsorption measurements additionally show that the chemiresistive response of the sensor equilibrates on a shorter time scale than gas adsorption, suggesting that interparticle contacts limit conduction through the bulk material and that conductivity at the crystallite surfaces is most responsive to gas adsorption.
Elemental white phosphorus (P 4 ) is a key feedstock for the entire phosphorus-derived chemicals industry, spanning everything from herbicides to food additives. The electrochemical reduction of phosphate salts could enable the sustainable production of P 4 ; however, such electrosynthesis requires the cleavage of strong, inert P−O bonds. By analogy to the promotion of bond activation in aqueous electrolytes with high proton activity (Brønsted−Lowry acidity), we show that low oxide anion activity (Lux−Flood acidity) enhances P−O bond activation in molten salt electrolytes. We develop electroanalytical tools to quantify the oxide dependence of phosphate reduction, and find that Lux acidic phosphoryl anhydride linkages enable selective, high-efficiency electrosynthesis of P 4 at a yield of 95% Faradaic efficiency. These fundamental studies provide a foundation that may enable the development of low-carbon alternatives to legacy carbothermal synthesis of P 4 .
Elemental white phosphorus (P4) is a crucial feedstock for the entire phosphorus-derived chemicals industry, spanning everything from herbicides to food additives. Currently, industrial P4 production is gated by the infrastructurally demanding reduction of phosphate rock by carbon coke in an arc furnace at temperatures of up to 1500 °C. The electrochemical reduction of phosphate salts could enable the sustainable, point-of-use manufacture of white phosphorus; however, such P4 electrosynthesis requires the rapid activation of strong P—O bonds. Herein, we show that the intrinsic oxide-accepting character of phosphoryl anhydride linkages in molten condensed phosphate salts promotes the reduction of phosphate to white phosphorus at high electron and energy efficiencies. These findings could enable an efficient, low-carbon alternative to legacy carbothermal synthesis of P4.
Elemental white phosphorus (P4) is a key feedstock for the entire phosphorus-derived chemicals industry, spanning everything from herbi-cides to food additives. The electrochemical reduction of phosphate salts could enable the sustainable production of P4; however, such electrosynthesis requires the cleavage of strong, inert P—O bonds. By analogy to the promotion of bond activation in aqueous electrolytes with high proton activity (Brønsted-Lowry acidity), we show that low oxide anion activity (Lux-Flood acidity) enhances P—O bond activa-tion in molten salt electrolytes. We develop electroanalytical tools to quantify the oxide dependence of phosphate reduction, and find that Lux acidic phosphoryl anhydride linkages enable selective, high-efficiency electrosynthesis of P4 at a yield of 95% faradaic efficiency. These fundamental studies provide a foundation that may enable the development of low-carbon alternatives to legacy carbothermal synthesis of P4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.