A general method for the immobilization of DNA through its 5'-end has been developed. A synthetic oligonucleotide, modified at its 5'-end with an aldehyde or carboxylic acid, was attached to latex microspheres containing hydrazide residues. Using T4 polynucleotide ligase and an oligonucleotide splint, a single stranded 98mer was efficiently joined to the immobilized synthetic fragment. After impregnation of the latex microspheres with the fluorescent dye, Nile Red and attachment of an aldehyde 16mer, 5 X 10(5) bead-DNA conjugates could be detected with a conventional fluorimeter.
We describe a novel method for attaching any DNA molecule to submicron latex beads and characterize the hybridization kinetic properties of these bead-DNA conjugates. The conjugates hybridize to DNA in solution with rates comparable to homogeneous hybridization reactions, are compatible with common hybridization conditions and are conveniently manipulated. They should thus serve as useful reagents for the fractionation and characterization of DNA and RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.