This review discusses the use of the combination of surface roughness and hydrophobicity for engineering large slip at the fluid-solid interface. These superhydrophobic surfaces were initially inspired by the unique water-repellent properties of the lotus leaf and can be employed to produce drag reduction in both laminar and turbulent flows, enhance mixing in laminar flows, and amplify diffusion-osmotic flows. We review the current state of experiments, simulations, and theory of flow past superhydrophobic surfaces. In addition, the designs and limitations of these surfaces are discussed, with an eye toward implementing these surfaces in a wide range of applications.
A series of experiments is presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness. These ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of microposts and microridges which are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the pressure drop as a function of the flow rate for a series of microchannel geometries and ultrahydrophobic surface designs. Pressure drop reductions up to 40% and apparent slip lengths larger than 20 m are obtained using ultrahydrophobic surfaces. No drag reduction is observed for smooth hydrophobic surfaces. A confocal surface metrology system was used to measure the deflection of an air-water interface that is formed between microposts and supported by surface tension. This shear-free interface reduces the flow resistance by allowing the fluid to contact only a very small effective area of the silicon surface. The impact of the surface topology on the drag reduction is explored in detail and the results are found to be in good qualitative agreement with the predictions of analytical theory.
In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction of viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.
A series of experiments are presented which study the flow kinematics of water past drag-reducing superhydrophobic surfaces. The ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of micrometer-sized ridges aligned in the flow direction. The ridges are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the velocity profile and the pressure drop as a function of the flow rate for a series of rectangular cross-section microchannel geometries and ultrahydrophobic surface designs. The velocity profile across the microchannel is determined through microparticle image velocimetry ͑-PIV͒ measurements capable of resolving the flow down to lengthscales well below the size of the surface features. Through these detailed velocity measurements, it is demonstrated that slip along the shear-free air-water interface supported between the hydrophobic micrometer-sized ridges is the primary mechanism responsible for the drag reduction observed for flows over ultrahydrophobic surfaces. A maximum slip velocity of more than 60% of the average velocity in the microchannel is found at the center of the shear-free air-water interface whereas the no-slip boundary condition is found to hold along the surface of the hydrophobic ridges. The experimental velocity and pressure drop measurements are compared to the predictions of numerical simulations and an analytical theory based on a simple model of an ultrahydrophobic surface composed of alternating shear-free and no-slip bands with good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.