High assurance systems used in avionics, medical implants, and cryptographic devices often rely on a small trusted base of hardware and software to manage the rest of the system. Crafting the core of such a system in a way that achieves flexibility, security, and performance requires a careful balancing act. Simple static primitives with hard partitions of space and time are easier to analyze formally, but strict approaches to the problem at the hardware level have been extremely restrictive, failing to allow even the simplest of dynamic behaviors to be expressed.Our approach to this problem is to construct a minimal but configurable architectural skeleton. This skeleton couples a critical slice of the low level hardware implementation with a microkernel in a way that allows information flow properties of the entire construction to be statically verified all the way down to its gate-level implementation. This strict structure is then made usable by a runtime system that delivers more traditional services (e.g. communication interfaces and long-living contexts) in a way that is decoupled from the information flow properties of the skeleton. To test the viability of this approach we design, test, and statically verify the information-flow security of a hardware/software system complete with support for unbounded operation, inter-process communication, pipelined operation, and I/O with traditional devices. The resulting system is provably sound even when adversaries are allowed to execute arbitrary code on the machine, yet is flexible enough to allow caching, pipelining, and other common case optimizations.
NSF Not applicableApproved for public release; distribution is unlimited.Securing the supply chain of integrated circuits is of the utmost importance to computer security. In addition to counterfeit microelectronics, the theft or malicious modification of designs in the foundry can result in catastrophic damage to critical systems and large projects. In this Technical Report, we describe a 3D architecture that splits a design into two separate tiers: one tier that contains critical security functions is manufactured in a trusted foundry; another tier is manufactured in an unsecured foundry. We argue that a split manufacturing approach to hardware trust based on 3D integration is viable and provides several advantages over other approaches.Hardware-oriented security and trust, 3D integration, trustworthy system development, policy enforcement, cryptographic hardware, embedded systems security, malicious hardware, trusted foundries AbstractSecuring the supply chain of integrated circuits is of the utmost importance to computer security. In addition to counterfeit microelectronics, the theft or malicious modification of designs in the foundry can result in catastrophic damage to critical systems and large projects. In this Technical Report, we describe a 3D architecture that splits a design into two separate tiers: one tier that contains critical security functions is manufactured in a trusted foundry; another tier is manufactured in an unsecured foundry. We argue that a split manufacturing approach to hardware trust based on 3D integration is viable and provides several advantages over other approaches.
Abstract-Nanophotonic architectures have recently been proposed as a path to providing low latency, high bandwidth network-on-chips. These proposals have primarily been based on micro-ring resonator modulators which, while capable of operating at tremendous speed, are known to have both a high manufacturing induced variability and a high degree of temperature dependence. The most common solution to these two problems is to introduce small heaters to control the temperature of the ring directly, which can significantly reduce overall power efficiency. In this paper, we introduce plasmonics as a complementary technology. While plasmonic devices have several important advantages, they come with their own new set of restrictions, including propagation loss and lack of Wave Division Multiplexing (WDM) support. To overcome these challenges we propose a new hybrid photonic/plasmonic channel that can support WDM through the use of photonic micro-ring resonators as variation tolerant passive filters. Our aim is to exploit the best of both technologies: wave-guiding of photonics, and modulating using plasmonics. This channel provides moderate bandwidth with distance independent power consumption and a higher degree of temperature and process variation tolerance. We describe the state of plasmonics research, present architecturallyuseful models of many of the most important devices, explore new ways in which the limitations of the technology can most readily be minimized, and quantify the applicability of these novel hybrid schemes across a variety of interconnect strategies. Our link-level analysis show that the hybrid channel can save from 28% to 45% of total channel energy-cost per bit depending on process variation conditions.
Dynamically tracking the flow of data within a microprocessor creates many new opportunities to detect and track malicious or erroneous behavior, but these schemes all rely on the ability to associate tags with all of virtual or physical memory. If one wishes to store large 32-bit tags, multiple tags per data element, or tags at the granularity of bytes rather than words, then directly storing one tag on chip to cover one byte or word (in a cache or otherwise) can be an expensive proposition. We show that dataflow tags in fact naturally exhibit a very high degree of spatial-value locality, an observation we can exploit by storing metadata on ranges of addresses (which cover a non-aligned contiguous span of memory) rather than on individual elements. In fact, a small 128 entry onchip range cache (with area equivalent to 4KB of SRAM) hits more than 98% of the time on average. The key to this approach is our proposed method by which ranges of tags are kept in cache in an optimally RLE-compressed form, queried at high speed, swapped in and out with secondary memory storage, and (most important for dataflow tracking) rapidly stitched together into the largest possible ranges as new tags are written on every store, all the while correctly handling the cases of unaligned and overlapping ranges. We examine the effectiveness of this approach by simulating its use in definedness tracking (covering both the stack and the heap), in tracking network-derived dataflow through a multi-language web application, and through a synthesizable prototype implementation.
Hardware resources are abundant; state-of-the-art processors have over one billion transistors. Yet for a variety of reasons, specialized hardware functions for high assurance processing are seldom (i.e., a couple of features per vendor over twenty years) integrated into these commodity processors, despite a small flurry of late (e.g., ARM TrustZone, Intel VT-x/VT-d and AMD-V/AMD-Vi, Intel TXT and AMD SVM, and Intel AES-NI). Furthermore, as chips increase in complexity, trustworthy processing of sensitive information can become increasingly difficult to achieve due to extensive on-chip resource sharing and the lack of corresponding protection mechanisms. In this paper, we introduce a method to enhance the security of commodity integrated circuits, using minor modifications, in conjunction with a separate integrated circuit that can provide monitoring, access control, and other useful security functions. We introduce a new architecture using a separate control plane, stacked using 3-D integration, that allows for the function and economics of specialized security mechanisms, not available from a coprocessor alone, to be integrated with the underlying commodity computing hardware. We first describe a general methodology to modify the host computation plane by attaching an optional control plane using 3-D integration. In a developed example we show how this approach can increase Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. ACSAC '10 Dec. 6-10, 2010, Austin, Texas USA Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00. system trustworthiness, through mitigating the cache-based side channel problem by routing signals from the computation plane through a cache monitor in the 3-D control plane. We show that the overhead of our example application, in terms of area, delay and performance impact, is negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.