We report the demonstration of high-power (840 mW) continuous-wave laser oscillation from Fe2+ ions in zinc selenide. The output spectrum of the Fe:ZnSe laser had a line-center near 4140 nm with a linewidth of 80 nm. The beam quality was measured to be M2≤1.2 with a maximum slope efficiency of 47%. Small shifts observed in output wavelength with increased output power were attributed to thermal effects. No thermal roll-off of slope efficiency was observed at the maximum of output power.
The authors present a mid-IR depressed cladding waveguide laser in Fe:ZnSe. The laser produced a maximum output power of 76 mW at 4122 nm and laser thresholds as low as 154 mW were demonstrated. This represents a 44% reduction in threshold power compared with the bulk laser system demonstrated in this paper. The waveguide laser was found to have a narrow spectral linewidth of 6 nm FHWM compared to the 50 nm typical of bulk Fe:ZnSe lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.