Atom-based measurements of length, time, gravity, inertial forces and electromagnetic fields are receiving increasing attention. Atoms possess properties that suggest clear advantages as self calibrating platforms for measurements of these quantities. In this review, we describe work on a new method for measuring radio frequency (RF) electric fields based on quantum interference using either Cs or Rb atoms contained in a dielectric vapor cell. Using a bright resonance prepared within an electromagnetically induced transparency window it is possible to achieve high sensitivities, <1 μV cm−1 Hz−1/2, and detect small RF electric fields
μV cm−1 with a modest setup. Some of the limitations of the sensitivity are addressed in the review. The method can be used to image RF electric fields and can be adapted to measure the vector electric field amplitude. Extensions of Rydberg atom-based electrometry for frequencies up to the terahertz regime are described.
It is clearly important to pursue atomic standards for quantities like electromagnetic fields, time, length, and gravity. We have recently shown using Rydberg states that Rb atoms in a vapor cell can serve as a practical, compact standard for microwave electric field strength. Here we demonstrate for the first time that Rb atoms excited in a vapor cell can also be used for vector microwave electrometry by using Rydberg-atom electromagnetically induced transparency. We describe the measurements necessary to obtain an arbitrary microwave electric field polarization at a resolution of 0.5°. We compare the experiments to theory and find them to be in excellent agreement.
We investigate anomalous ion-motional heating, a limitation to multi-qubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multi-zone surfaceelectrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d. We find a scaling of approximately d −4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure frequency scaling of the inherent electric-field noise close to 1/f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d −4 distance dependence, including several microscopic models of current interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.