In a video-based surveillance system, a mobile camera can provide dynamical and wider monitoring range and the video data transmitted from cooperative mobile cameras can be used to actively detect the objects of interest. However, it is a difficult task to accurately detect the moving objects from the image frames captured by the mobile cameras and the data flow of surveillance video from multiple cameras could be huge. The camera motion usually causes the shifting of static background as well as the moving objects in the captured image frames. In order to correctly estimate the motion of moving objects, a voting-based motion estimation algorithm is proposed to process the image frames captured by the mobile camera. Based on the estimation, a content-based video transmission mechanism is then implemented to further effectively decrease encoding cost and bandwidth utilization. The overall approach consists of voting-based motion estimation, moving object edges detection and content-based sampling coding at temporal and spatial scales. Without knowing the prior knowledge of camera motion, the motion estimation algorithm only utilizes the shifting information of edges of static background to estimate the camera movement. The shifting information is determined based on the voting decision of several representative regions of interest and the estimated motion is then used to compensate for the visual content obtained from the captured image frames. The proposed algorithms have been experimentally tested on several practical scenarios and it is demonstrated that, under limited network bandwidth, the transmitted image quality can be progressively achieved and the transmission bandwidth utilization can be effectively decreased.
In this paper, we try to design and integrate an Automatic Optical Inspection System for inspection of polycrystalline silicon solar cells or modules, emphasizing on its image processing, measurement and analysis software utilities. Based on the cell intensity images captured by the electroluminescence imaging technique, we propose an inspecting procedure by using the Windows-based user interface to implement the average gray level tool, the thresholding tool, the positioning tool, the edge detection tool, the binary large object (BLOB) tool and the template matching tool. We use several sample images provided by the supplier to verify the software tool and receive accurate results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.