The study compared lower extremity kinematics and kinetics between male subjects with flat and normal feet when landing on both feet from platforms at different heights. Ten subjects with a flat feet arch and 10 subjects with a normal foot arch were recruited. They performed a double limb drop landing from 20, 40, and 60 cm onto a force-plate. A three-dimensional motion analysis system, force plates, and electromyography were used to analyze lower extremity kinetic and kinematic data. The GRF and angle of sagittal plane significantly increased with landing height in the flat foot group. In particular, hip joint angles at a height of 60 cm were significantly greater. The electromyography values were significantly higher for the tibialis anterior and vastus lateralis muscles, but were significantly lower in the abductor hallucis, gastrocnemius, and biceps femoris muscles in the flat foot group. GRF, joint angles, and muscle activity patterns in the lower extremities increases more with height in flat footed individuals than in people with a normal foot arch. Flat feet may aggravate the risk of shock on landing from a height; this might be ameliorated by a compensatory strategy at the hip joints to facilitate load distribution.
Objective: Mirror movements (MMs) are a phenomenon of involuntary movements that accompany physically intended movements of the opposite side of the body. In the current study, we investigated the clinical characteristics and cortical activation patterns of MMs in patients with corona radiata (CR) infarct, using functional MRI. Subjects and Methods: We recruited 31 consecutive hemiparetic stroke patients with CR infarct. Functional MRI was performed to verify brain activation patterns during grasp-release movements of the affected hand, and MM of the unaffected hand was observed simultaneously. Results: The prevalence of MMs was 54.8% (17 out of 31 patients), and the intensity of MMs ranged from mild to moderate. The severity of MM in the unaffected hand is closely related to the poor motor function of the affected upper extremity and to activations of the unaffected motor cortex and both supplementary motor areas (SMAs) during the movement of the affected hand. In addition, the activations of unaffected motor cortex and both SMAs were closely related to poor motor function of the affected upper extremity. Conclusions: The results suggest that MMs, poor motor function, and the activations of ipsilateral motor cortex and both SMAs are closely interconnected in patients with CR infarct.
Purpose:The purpose of this study is to investigate differences of cervical flexor muscle thickness (i.e., sternocleidomastoid muscle and deep cervical flexor muscles) depending on levels of pressure bio-feedback unit and eye directions during cranial-cervical flexor exercise in healthy subjects. Methods: A total of 30 subjects (12 males and 18 females) who had no medical history related to musculoskeletal and neurological disorders were enrolled in this study. They were instructed to perform cranial-cervical flexion exercise with adjustment of five different pressures (i.e., 22 mmHg, 24 mmHg, 26 mmHg, 28 mmHg, and 30 mmHg) using a pressure biofeedback unit, according to three different eye directions (i.e., 0°, 20°, and 40°). Muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was measured according to pressure levels and eye directions using ultrasonography. Results: In results of muscle thickness in sternocleidomastoid muscle and deep cervical flexor muscles, the thickness of those muscles was gradually increased compared to the baseline pressure level (22 mmHg), as levels in the pressure biofeedback unit during cranial-cervical flexion exercise were increasing. In addition, at the same pressure levels, muscle thickness was increased depending on ascending eye direction. Conclusion: Our findings showed that muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was generally increased during cranial-cervical flexion exercise, according to increase of eye directions and pressure levels. Therefore, we suggested that lower eye direction could induce more effective muscle activity than the upper eye direction in the same environment during cranial-cervical flexion exercise. This is an Open Access article distribute under the terms of the Creative Commons Attribution Non-commercial License (Http:// creativecommons.org/license/by-nc/3.0.) which permits unrestricted non-commercial use, distribution,and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.