The present study aimed to dosimetrically evaluate the small-fields of a 6 MV flattening filter-free (FFF) photon beam using different detectors.The 6 MV FFF photon beam was used for measurement of output factor, depth dose, and beam profile of small-fields of sizes 0.6 cm × 0.6 cm to 6.0 cm × 6.0 cm. The five detectors used were SNC125c, PinPoint, EDGE, EBT3, and TLD-100. All measurements were performed as per the International Atomic Energy Agency TRS 483 protocol. Output factors measured using different detectors as direct reading ratios showed significant variation for the smallest fields, whereas after correcting them according to TRS 483, all sets of output factors were nearly compatible with each other when measurement uncertainty was also considered. The beam profile measured using SNC125c showed the largest penumbra for all field sizes, whereas the smallest was recorded with EDGE. Compared with that of EBT3, the surface dose was found to be much higher for all the other detectors. PinPoint, EBT3, TLD-100, and EDGE were found to be the detector of choice for small-field output factor measurements; however, PinPoint needs special attention when used for the smallest field size (0.6 cm × 0.6 cm). EDGE and EBT3 are optimal for measuring beam profiles. EBT3, PinPoint, and EDGE can be selected for depth dose measurements, and EBT3 is suitable for surface dose estimation.
This study aimed to dosimetrically compare and evaluate the flattening filter-free (FFF) photon beambased three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) for lung stereotactic body radiotherapy (SBRT). RANDO phantom computed tomography (CT) images were used for treatment planning. Gross tumor volumes (GTVs) were delineated in the central and peripheral lung locations. Planning target volumes (PTVs) was determined by adding a 5 mm margin to the GTV. 3DCRT, IMRT, and VMAT plans were generated using a 6-MV FFF photon beam. Dose calculations for all plans were performed using the anisotropic analytical algorithm (AAA) and Acuros XB algorithms. The accuracy of the algorithms was validated using the dose measured in a CIRS thorax phantom. The conformity index (CI), high dose volume (HDV), low dose location (D 2cm ), and homogeneity index (HI) improved with FFF-VMAT compared to FFF-IMRT and FFF-3DCRT, while low dose volume (R 50% ) and gradient index (GI) showed improvement with FFF-3DCRT. Compared with FFF-3DCRT, a drastic decrease in the mean treatment time (TT) value was observed with FFF-VMAT for different lung sites between 57.09% and 60.39%, while with FFF-IMRT it increased between 10.78% and 17.49%. The dose calculation with Acuros XB was found to be superior to that of AAA. Based on the comparison of dosimetric indices in this study, FFF-VMAT provides a superior treatment plan to FFF-IMRT and FFF-3DCRT in the treatment of peripheral and central lung PTVs. This study suggests that Acuros XB is a more accurate algorithm than AAA in the lung region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.