A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.
Economical production of cellulase enzyme is key for feasible bio-ethanol production from lignocellulosics using an enzyme-based process. On-site cellulase production can be more feasible with the process of separate hydrolysis and fermentation (SHF) than with simultaneous saccharification and fermentation, since the cost of enzyme is more important and a variety of substrates are available for the SHF process. Cellulase production using various biomass substrates available for SHF, including paper sludge, pretreated wood (steam exploded), and their hydrolysis residues, was investigated in shake flasks and a fermenter for their productivities and titers. Among the newspaper sludge, office paper sludge, and steam-exploded woods treated in various ways, the steam-exploded wood showed the best properties for substrate in cellulase production. The best titer of 4.29 IU/mL was obtained using exploded wood of 2% (w/v) slurry in the shake flask, and the titer with the same substrate was duplicated to about 4.30 IU/mL in a 3.7-L fermenter. Also, the yield of enzyme reached 215 IU/g of substrate or 363 IU/g of cellulose. Despite various pretreatment attempts, newspaper and office paper substrate was inferior to the exploded-wood substrate for cellulase production. However, hydrolysis residues of papers showed quite promising results. The hydrolysis residue of office paper produced 2.48 IU/mL of cellulase in 7 d. Hence, the utilization of hydrolysis residues for cellulase production will be further investigated in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.