High-temperature superconductivity in copper oxides arises when a parent insulator compound is doped beyond some critical concentration; what exactly happens at this superconductor-insulator transition is a key open question. The cleanest approach is to tune the carrier density using the electric field effect; for example, it was learned in this way that weak electron localization transforms superconducting SrTiO(3) into a Fermi-glass insulator. But in the copper oxides this has been a long-standing technical challenge, because perfect ultrathin films and huge local fields (>10(9) V m(-1)) are needed. Recently, such fields have been obtained using electrolytes or ionic liquids in the electric double-layer transistor configuration. Here we report synthesis of epitaxial films of La(2- x)Sr(x)CuO(4) that are one unit cell thick, and fabrication of double-layer transistors. Very large fields and induced changes in surface carrier density enable shifts in the critical temperature by up to 30 K. Hundreds of resistance versus temperature and carrier density curves were recorded and shown to collapse onto a single function, as predicted for a two-dimensional superconductor-insulator transition. The observed critical resistance is precisely the quantum resistance for pairs, R(Q) = h/(2e) = 6.45 kΩ, suggestive of a phase transition driven by quantum phase fluctuations, and Cooper pair (de)localization.
We present a hybrid light-emitting diode structure composed of an n-type gallium nitride nanowire on a p-type silicon substrate in which current is injected along the length of the nanowire. The device emits ultraviolet light under both bias polarities. Tunnel-injection of holes from the p-type substrate (under forward bias) and from the metal (under reverse bias) through thin native oxide barriers consistently explains the observed electroluminescence behaviour. This work shows that the standard p-n junction model is generally not applicable to this kind of device structure.
The SOI symmetric lateral bipolar transistor is uniquely suitable for operation at high injection currents where the injected minority carrier density in the base region is larger than the base doping concentration. Transistors operating in high-injection can achieve record-high drive currents on the order of 3-5 mA/µm. The commonly used Shockley diode and bipolar current equations are modified to be applicable for all injection levels. Excellent agreement is shown between measured and modeled currents for data at V BC = 0. A novel partially depleted-base design can further increase the drive current and the current gain, especially at low V BE .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.