Most industrial wastes contain different organic mixtures, making important the investigation on the microbial destruction of composite substrates. The capability of microbes to remove harmful chemicals from polluted environments strongly depends on the presence of other carbon and energy substrates. The effect of mixtures of phenol- and methyl-substituted phenols (o-, m-, p-cresol) on the growth behaviour and degradation capacity of Trichosporon cutaneum strain was investigated. The cell-free supernatants were analysed by HPLC. It was established that the presence of o-, m- and p- cresol has not prevented complete phenol assimilation but had significant delaying effect on the phenol degradation dynamics. The mutual influence of phenol and p-cresol was investigated. We developed the kinetic model on the basis of Haldane kinetics, which used model parameters from single-substrate experiments to predict the outcome of the two-substrate mixture experiment. The interaction coefficients indicating the degree to which phenol affects the biodegradation of p-cresol and vice versa were estimated. Quantitative estimation of interaction parameters is essential to facilitate the application of single or mixed cultures to the bio-treatment of hazardous compounds.
The kinetic parameters characteristic of the growth and degradation capacity of Trichosporon cutaneum R57 strain in relation to o-, m-, p-chlorophenol, o-, m-, p-cresol and o-, m-, p-nitrophenol are presented in this study. The investigated strain degraded up to 0.1 g/l of all mono-chlorophenols. A concentration of 0.2 g/l p-cresol was completely degraded whereas m-cresol was degraded to an extent of 32%. No degradation of o-cresol was observed. O-nitrophenol in concentration of 0.1 g/l was less readily degraded than the same concentration of m-nitrophenol and p-nitrophenol was not degraded. The Haldane equation has frequently been used to describe the biodegradation of toxic substrates but little is known about the kinetic constants for the biodegradation of aromatic compounds. The coefficients obtained confirmed the higher toxicity of the investigated phenol derivatives on Trichosporon cutaneum R57. The yield coefficient (Y) was least of all in the medium supplemented with o-chlorophenol where µ max was also minimum. The highest value of K i characteristic of p-cresol assimilation correlated with the ability of Trichosporon cutaneum R57 to degrade up to 0.4 g/l of this compound. The model prediction was compared with experimental data. It was found that the designed model described the trend of experimental data satisfactorily.
Taxonomic identification of three newly isolated Antarctic fungal strains by their 18S rDNA sequences revealed their affiliation with Aspergillus fumigatus. Phenol (0.5 g/l) as the sole carbon source was completely degraded by all strains within less than two weeks. Intracellular activities of three key enzymes involved in the phenol catabolism were determined. Activities of phenol hydroxylase (EC 1.14.13.7), hydroquinone hydroxylase (EC 1.14.13.x), and catechol 1,2-dioxygenase (EC 1.13.11.1) varied significantly between strains. The rates of phenol degradation in the three strains correlated best with the activity of catechol 1,2-dioxygenase. Six pairs of oligonucleotide primers were designed on the basis of the Aspergillus fumigatus Af293 genome sequence (NCBI Acc. No. XM_743491.1) and used to amplify phenol hydroxylase-related gene sequences. DNA sequences of about 1200 bp were amplified from all three strains and found to have a high degree of sequence identity with the corresponding gene of Aspergillus fumigatus Af293.
In an attempt to estimate the occurrence of phenol hydroxylase-related gene sequences we performed a dot blot hybridization assay with DNA from phenol utilizing Trichosporon cutaneum R57 strain NBIMCC 2414 and microbial isolates from different wastewaters. The used oligonucletides were homologous to the 5Ј-end of TORPHD locus (NCBI)-coding phenol hydroxylase in Trichosporon cutaneum ATCC 46490 and to the 5Ј-end of TORCCMLE locus (NCBI)-coding cis,cis-muconate-lactonizing enzyme in Trichosporon cutaneum ATCC 58094. Two microbial strains, Escherichia coli JM 109 and Lactobacillus acidophilus ATCC 4356, incapable to degrade phenol were used as negative controls.We established the presence of hybridization with both used oligonucleotide probes in T. cutaneum R57 and T. cutaneum ATCC 46490 yeast strains. The experiments implemented with microbial isolates obtained from three industrialized areas in Bulgaria showed that 7 of them may carry sequences hybridizing with a phenol hydroxylase oligonucleotide probe. A subsequent hybridization test for the cis,cis-muconate-lactonizing enzyme showed that only 3 of them displayed a positive signal. Lactobacillus acidophilus ATCC 4356 and Escherichia coli JM 109 strains' DNA used as negative controls in the experiments did not reveal any sequence similarity to the both applied oligonucleotides.The partial nucleotide sequences of 16S rDNAs of the isolated strains C1 and K1 obtained as PCR products were determined and sequenced. A comparison of these nucleotide sequences with similar sequences in NCBI Data Bank indicated that both C1 and K1 strains are closely related to the genera Acinetobacter and Burkholderia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.