Fragile X syndrome, the most frequent form of hereditary mental retardation, is due to a mutation of the fragile X mental retardation 1 (FMR1) gene on the X chromosome. Like fragile X patients, FMR1-knockout (FMR1-KO) mice lack the normal fragile X mental retardation protein (FMRP) and show both cognitive alterations and an immature neuronal morphology. We reared FMR1-KO mice in a C57BL͞6 background in enriched environmental conditions to examine the possibility that experience-dependent stimulation alleviates their behavioral and neuronal abnormalities. FMR1-KO mice kept in standard cages were hyperactive, displayed an altered pattern of open field exploration, and did not show habituation. Quantitative morphological analyses revealed a reduction in basal dendrite length and branching together with more immatureappearing spines along apical dendrites of layer five pyramidal neurons in the visual cortex. Enrichment largely rescued these behavioral and neuronal abnormalities while increasing ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit 1 (GluR1) levels in both genotypes. Enrichment did not, however, affect FMRP levels in the WT mice. These data suggest that FMRP-independent pathways activating glutamatergic signaling are preserved in FMR1-KO mice and that they can be elicited by environmental stimulation.fragile X mental retardation protein ͉ mental retardation ͉ FMR1 gene ͉ AMPA receptor ͉ dendritic spines S everal genes associated with mental retardation have been mapped on the X chromosome and, among them is the fragile X mental retardation 1 (FMR1) gene. The fragile X mental retardation protein (FMRP) absence or mutation is responsible for the fragile X syndrome (FXS), which is the most common form of inherited mental retardation. Most of the individuals affected carry a trinucleotide repeat that, after methylation, leads to transcriptional silencing of the FMR1 gene (1). Patients with the FXS do not express FMRP and exhibit phenotypic traits ranging from severe (IQ 20) to moderate (IQ 60) mental retardation, defective attention, autistic behavior, and physical features including an elongated face, large ears, joint laxity, and macroorchidism (2-5).FMR1 is highly conserved between human and mouse, with a nucleotide and amino acid identity of 95% and 97%, respectively (6). The expression pattern of mouse FMR1 is similar to its human counterpart in both tissue specificity and timing (7). Interestingly, FMR1-knockout (FMR1-KO) mice, the mouse model for the FXS, lack the normal FMRP and show macroorchidism, hyperactivity, and mild learning deficits (8, 9) reminiscent of the human syndrome.One common brain feature of fragile X patients and of the mouse model for the syndrome is the presence of long and thin immature dendritic spines indicative of defective pruning during development (10)(11)(12)(13)(14). At the molecular level, it has been shown that protein synthesis triggered by the type I metabotropic glutamate receptor (mGluR1) agonist dihydroxyphenylglycine is dramati...
Both chronic stress in adulthood and episodes of stress in the early postnatal period have been shown to interfere with neuronal development in limbic prefrontal cortical regions. The present study in rats showed for the first time that the development of layer II/III pyramidal neurons in the dorsal anterior cingulate (ACd) and orbitofrontal cortex (OFC) is significantly affected in offspring of mothers exposed to stress during pregnancy. In prenatally stressed (PS) male rat pups the ACd and OFC showed significantly lower spine densities on the apical dendrite (ACd, -20%; OFC, -25%), on basal dendrites reduced spine densities where found only in the OFC (-20% in PS males). Moreover, in both cortical areas a significant reduction of dendritic length was observed in PS males compared to control offspring, which was confined to the apical dendrites (ACd, -30%, OFC, -26%). Sholl analysis revealed that these alterations were accompanied by a significantly reduced complexity of the dendritic trees in both cortical regions. PS females displayed reductions of dendritic spine densities in the ACd and OFC on both the basal (ACd, -21%; OFC, -20%) and apical dendrites (ACd, -21%; OFC, -21%), however, in contrast to the findings in PS males, no dendritic atrophy was detected in the PS females. These findings demonstrate that gestational stress leads to significant alterations of prefrontal neuronal structure in the offspring of the stressed mothers in a sex-specific manner.
The present study provides evidence for the hypothesis that the extent and the direction of experience-induced synaptic changes in cortical areas correlates with time windows of neuronal as well as endocrine development. Repeated brief exposure to maternal separation prior to the stress hyporesponsive period (SHRP) of the hypothalamic-pituitary-adrenal (HPA) axis induced significantly reduced dendritic spine density (-16%) in layer II/III pyramidal neurons of the anterior cingulate cortex (ACd) of 21-day-old rats, whereas separation after termination of the SHRP resulted in increased spine densities (+16%) in this neuron type. In addition, rats of both groups displayed elevated basal plasma levels of corticosterone at this age. Separation during the SHRP (postnatal days 5-7) did not influence spine density in the ACd, and basal corticosterone levels remained unchanged. In contrast, pyramidal neurons in the somatosensory cortex (SSC) displayed significantly enhanced spine densities (up to 52% increase) independent from the time of separation. These results indicate that alterations in the synaptic balance in limbic and sensory cortical regions in response to early emotional experience are region-specific and related to the maturational stage of endocrine and neuronal systems.
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.